

www.CRAworld.com

Pilot Perimeter Groundwater Trench Collection System Study

Groundwater Trench Collection System Interim Measure East Plant Area - Revision 1

GM CET Bedford Facility 105 GM Drive Bedford, Indiana

EPA ID# IND006036099 AOC Docket No. RCRA 05-2014-0011

Prepared for: GM LLC

Disclaimer - Please note, Conestoga-Rovers & Associates (CRA) changed its name to GHD Limited on July 1, 2015. This document was originally submitted under the CRA name prior to this date. However, in the interest of continuity, the CRA name will remain on this document after July 1, 2015.

Conestoga-Rovers & Associates

651 Colby Drive Waterloo, Ontario N2V 1C2

Table of Contents

Section 1.0 Introduction	.3 .3 3 4 5 6
2.1 Site Location and Description	. 3 3 3 4 5 6
2.2 Geologic/Hydrogeologic/Hydrologic Conditions 2.2.1 Regional Physiography and Topography 2.2.2 Regional Land Use 2.2.3 Regional Geology 2.2.4 Regional Hydrogeology 2.2.5 Regional Hydrology 2.3 East Plant Area Environmental Setting 2.3.1 East Plant Area Geology 2.3.2 East Plant Area Hydrology 2.3.3 East Plant Area Hydrology 2.3.1 East Plant Area Hydrology 2.3.1 East Plant Area Hydrology 2.3.2 East Plant Area Hydrology 3.1 Perimeter Groundwater Trench Collection System Coreholes 3.2 Geotechnical Samples 3.3 Downhole Geophysical Logging 3.4 Packer-Pressure Testing 3.5 Environmental Samples 3.5 Environmental Samples 4.1 Basis of Pilot Trench Profile Selection 4.2 Pilot Trench Alignment Selection 4.2 Pilot Trench Bedrock Descriptions	. 3 3 4 5 6
2.2.1 Regional Physiography and Topography 2.2.2 Regional Land Use	3 4 5 6 7
2.2.2 Regional Land Use	3 4 5 6 6
2.2.3 Regional Geology	4 5 6 6 7
2.2.4 Regional Hydrogeology 2.2.5 Regional Hydrology 2.3 East Plant Area Environmental Setting 2.3.1 East Plant Area Geology 2.3.2 East Plant Area Hydrology Section 3.0 Design Data Collection Activities 3.1 Perimeter Groundwater Trench Collection System Coreholes 3.2 Geotechnical Samples 3.3 Downhole Geophysical Logging 3.4 Packer-Pressure Testing. 3.5 Environmental Samples Section 4.0 Pilot Trench Design 4.1 Basis of Pilot Trench Profile Selection 4.2 Pilot Trench Alignment Selection. 4.2 Pilot Trench Bedrock Descriptions	5 6 7 8
2.2.5 Regional Hydrology 2.3 East Plant Area Environmental Setting 2.3.1 East Plant Area Geology 2.3.2 East Plant Area Hydrology Section 3.0 Design Data Collection Activities 3.1 Perimeter Groundwater Trench Collection System Coreholes 3.2 Geotechnical Samples 3.3 Downhole Geophysical Logging 3.4 Packer-Pressure Testing 3.5 Environmental Samples Section 4.0 Pilot Trench Design 4.1 Basis of Pilot Trench Profile Selection 4.2 Pilot Trench Alignment Selection 4.2 Pilot Trench Bedrock Descriptions	6 . 6 7 8
2.3 East Plant Area Environmental Setting	. 6 7 8
2.3.1 East Plant Area Geology	7 8
Section 3.0 Design Data Collection Activities 3.1 Perimeter Groundwater Trench Collection System Coreholes 3.2 Geotechnical Samples 3.3 Downhole Geophysical Logging 3.4 Packer-Pressure Testing 3.5 Environmental Samples 4.1 Basis of Pilot Trench Profile Selection 4.2 Pilot Trench Alignment Selection 4.2.1 Pilot Trench Bedrock Descriptions	8
Section 3.0 Design Data Collection Activities 3.1 Perimeter Groundwater Trench Collection System Coreholes	
3.1 Perimeter Groundwater Trench Collection System Coreholes	.9
3.2 Geotechnical Samples	_
3.3 Downhole Geophysical Logging	. 9
3.4 Packer-Pressure Testing	10
3.5 Environmental Samples	10
Section 4.0 Pilot Trench Design	10
4.1 Basis of Pilot Trench Profile Selection	11
4.2 Pilot Trench Alignment Selection	11
4.2.1 Pilot Trench Bedrock Descriptions	14
4.2.1 Pilot Trench Bedrock Descriptions	15
Section 5.0 Construction Quality Assurance	
	23
5.1 Bedrock Quality Verification	24
5.1.1 Electrical Resistivity	
5.1.2 Ground Penetrating Radar	25
Section 6.0 Pilot Trench Construction	26
6.1 Qualification of Contractor	26
6.2 Materials	27
6.2.1 Cement-Bentonite Grout	27
6.2.2 Physical Barrier	
6.2.3 Drain Collection Pipe	
6.2.4 Trench Backfill	

Table of Contents

			Page	
	6.2.9	Drainage Media Sand	28	
	6.2.10	Backfill	28	
	6.2.11	East Plant Area Cover System	28	
	6.2.12	Wet Well	29	
	6.3	Equipment and Approach	29	
	6.3.1	Working Platform	29	
	6.3.2	Trench Excavation	29	
	6.3.3	Soil Handling and Stockpiling	30	
	6.3.4	Physical Barrier Placement		
	6.3.5	Grout Placement	31	
	6.3.6	Drain Pipe Placement		
	6.3.7	Geotextile Placement		
	6.3.8	Backfill Placement		
	6.4	Execution of the Work		
	6.4.1	Site Preparation		
	6.4.2	Excavation		
	6.4.3	Trench Completion		
	6.4.4	Tolerances	34	
Section 7.0	Construction Support And Coordination With			
	Other East Plant Area Activities			
	7.1	Supporting Facilities	35	
	7.1.1	Site Security	35	
	7.1.2	Site Offices	35	
	7.1.3	Emergency First Aid Facilities	35	
	7.1.4	Fire Fighting Equipment	35	
	7.1.5	Decontamination Facilities	35	
	7.1.6	Portable Sanitary Facilities	36	
	7.1.7	Utilities	36	
	7.1.8	Site Communications	36	
	7.1.9	Access Roads	36	
	7.1.10	Parking	36	
	7.3	Fugitive Particulate Control	36	
	7.4	Sediment and Erosion Control	37	
	7.5	Institutional Controls	37	
	7.6	Operation, Maintenance, and Monitoring	37	
	7.7	Permit Applications and Approvals	37	
Section 8.0	Commu	nity Relations	38	
Section 9.0	Schedule38			

Table of Contents

	Page
Section 10.0	Cost Estimate
Section 11.0	References39
	List of Figures (Following Text)
Figure 1.1	Facility Location
Figure 1.2	Facility Plan
Figure 2.1	Groundwater Collection System
Figure 2.2	Glacial Features of South-Central Indiana
Figure 2.3	Bedrock Structural Features of Indiana
Figure 2.4	Bedrock Geology of Indiana
Figure 2.5	Generalized Stratigraphic Column for Paleozoic Rocks In Indiana
Figure 2.6	Lower East Fork White River Drainage Basin
Figure 2.7	East Plant Area and AOI Locations
Figure 2.8	Approximate Bedrock Formation Contact Locations
Figure 2.9	Bedrock Topography
Figure 3.1	Perimeter Groundwater Trench Collection System Investigation Coreholes
Figure 3.2	Groundwater Analytical Results
Figure 4.1	Proposed Draft Perimeter Groundwater Trench Collection System Alignment
Figure 4.2	Pilot Trench Study Profile (North Leg)
Figure 4.3	Pilot Trench Study Profile (South Leg)
Figure 9.1	Project Schedule

List of Tables (Following Text)

Table 3.1 Soil Sample Analytical Results Summary

Table 3.2 Groundwater Sample Analytical Results Summary

List of Appendices

Appendix A Boring Logs

Appendix B Bedrock Geotechnical Sample Results

Appendix C Downhole Geophysical Logging

Appendix D Packer-Pressure Testing

Appendix E Design Drawings

Appendix F Construction Quality Assurance Plan

Appendix G Design Calculations

Appendix H Sampling and Analysis Plan (SAP)

Appendix I Ambient Air Quality Monitoring Program (AAQMP)

AAQMP - ambient air quality monitoring program

AMSL - above mean sea level

AOC - Administrative Order on Consent, effective August 4, 2014

AOIs - Areas of Interest

ASTM - American Society for Testing and Materials

bgs - below ground surface

BIPS - borehole image processing system

CA - Corrective Action

CET - Castings, Engines, and Transmissions

CFR - Code of Federal Regulations

cfs - cubic feet per second

CLP - Community Liaison Panel cm/s - centimeters per second

List of Acronyms

QA - Construction Quality Assurance

CRA - Conestoga-Rovers & Associates, Inc.

DB-4 - Detention Basin 4

ERI - Electrical Resistivity Imaging Survey

EM - electromagnetic

Facility - GM CET Bedford Facility

ft - feet

GM - General Motors LLCgpm - gallons per minute

GPR - Ground Penetrating Radar

HASP - Consolidated Health and Safety Plan

HDPE - High Density Polyethylene

HSA - Hollow-Stem Augers

IDNR - Indiana Department of Natural Resources

IM - Interim Measure

Interim Groundwater Monitoring Plan - Pilot Trench Interim Groundwater Monitoring Program and Operation Schedule

MPa - Mega Pascal

NAPL - Non-Aqueous Phase Liquids

NPDES - National Pollutant Discharge Elimination System

OM&M Plan - Operation, Maintenance, and Monitoring Plan

PCB - Polychlorinated Biphenyl

Pilot Trench - Pilot Perimeter Groundwater Trench Collection System

QAPP - Quality Assurance Project Plan

RA - Removal Action

RCRA - Resource Conservation and Recovery Act

Report - Pilot Perimeter Groundwater Trench Collection System Study Report

RFI - RCRA Facility Investigation

RQD - Rock Quality Index

SDR - Standard Diameter Ratio

List of Acronyms

SAP - Sampling and Analysis Plan

Site - GM CET Bedford Facility

spr - single-point resistance

sp - spontaneous potential

SSC - Site Source Control

STA - Station Along Trench

TM - Technical Memorandum

TSCA - Toxic Substances Control Act

TSP - total suspended particulates

U.S. EPA - United States Environmental Protection Agency

WW - Wet Well

Section 1.0 Introduction

This Pilot Perimeter Groundwater Trench Collection System (Pilot Trench) Study (Report) has been prepared by Conestoga-Rovers & Associates, Inc. (CRA) for the General Motors LLC (GM) Castings, Engines, and Transmissions (CET) Bedford Facility (Facility) located in Bedford, Indiana as part of the Resource Conservation and Recovery Act (RCRA) Corrective Action (CA) activities being conducted under the Administrative Order on Consent (AOC) (effective August 4, 2014) between United States Environmental Protection Agency (U.S. EPA) and GM for the Facility (Docket No. RCRA-005-2014-0011), and in accordance with the Toxic Substances Control Act (TSCA).

The Facility location and Facility plan are presented on Figures 1.1 and 1.2, respectively.

One major component of the selected CA activities to be implemented for the Site includes the construction of a Perimeter Groundwater Trench Collection System Interim Measure (IM) as one of the East Plant Area IMs. To help evaluate the effectiveness of this CA activity and help with the design of the collection system as a whole, GM will design, install, and operate a small section of bedrock trench as a Pilot Trench Study prior to undertaking the design and construction of the remainder of the Perimeter Groundwater Trench Collection System. A plan for a Pilot Trench, dated November 25, 2008, was previously submitted to U.S. EPA. This Report presents a revised alignment for the Pilot Trench. The Pilot Trench will be located on the east side of the East Plant Area near Bailey Scales Road and will be approximately 800 feet (ft) long. This Report provides the details associated with the construction of the Pilot Trench spanning the bedrock valley in the northeast corner of the East Plant Area.

Post-closure care and performance monitoring of the Pilot Trench will be included in the Pilot Trench Interim Groundwater Monitoring Program and Operation Schedule (Interim Groundwater Monitoring Plan) which will be submitted within 60 days of completion of the Pilot Trench construction, as required under the AOC.

The approved Quality Assurance Project Plan (QAPP) (CRA, July 18, 2001; as amended in Addendum 2 to the QAPP, dated July 25, 2006) and Consolidated Health and Safety Plan (HASP): Revision 2 (CRA, June 24, 2008), as amended in 2015, will apply to the Pilot Trench Study activities.

This Report is organized as follows:

Section 2.0 – Site Information

This section provides background information related to Site land use, geology, and hydrogeology.

Section 3.0 - Design Data Collection Activities

This section provides RCRA Facility Investigation (RFI) sample results related to the Pilot Trench design.

Section 4.0 - Pilot Trench Design

This section provides specific details related to the Pilot Trench.

Section 5.0 – Construction Quality Assurance

This section presents additional information related to the Pilot Trench construction and construction quality assurance procedures.

Section 6.0 - Pilot Trench Construction

This section presents technical information and requirements for various components of the Pilot Trench.

Section 7.0 – Construction Support Facilities and Coordination with Other East Plant Area Activities

This section presents details of the support facilities required for construction of the Pilot Trench Study.

Section 8.0 - Community Relations

This section presents various means of community participation and awareness.

Section 9.0 - References

This section presents references cited in this Report.

Section 2.0 Site Information

2.1 Site Location and Description

The Facility is located at 105 GM Drive in the City of Bedford, Shawswick Township, Lawrence County, Indiana. The Facility lies on approximately 152.5 acres of land on either side of GM Drive and extends north along Bailey Scales Road. The East Plant Area represents a portion of the Facility and is located to the east of GM Drive and west of Bailey Scales Road (see Figure 1.2).

Currently, the Facility is bordered by residential and undeveloped areas to the north; to the south by the White River Port Authority (former Canadian and Pacific Railway railroad tracks have been removed), Bedford Recycling (formerly IMCO, a Kaiser Aluminum recycling facility) and a residential property; to the east by residential and undeveloped areas; and to the west by the abandoned railway, church, residential properties, commercial properties, and a cemetery.

The Facility is currently zoned and utilized for industrial purposes. The reasonably foreseeable future land use is industrial.

The proposed Pilot Trench will be constructed in the East Plant Area, east of GM Drive, and west of Bailey Scales Road (see Figure 2.1). The existing facilities and topography in the vicinity of the proposed Pilot Trench are also shown on Figure 2.1.

2.2 Geologic/Hydrogeologic/Hydrologic Conditions

2.2.1 Regional Physiography and Topography

The State of Indiana covers an area of approximately 36,300 square miles. The State's topography ranges from 324 to 1,257 ft above mean sea level (AMSL). The lowest point of elevation is in the southwest corner of Indiana, where the Wabash River flows into the Ohio River. The highest point is in Wayne County in east central Indiana.

The approximate 152.5 acres of the Facility ranges from the peak of 755 ft AMSL on the East Plant Area Cover System, to 604 ft AMSL at the northeast drainage to Tributary 3 (648 ft AMSL at Bailey's Branch Creek in the southeast). The Facility works within the West Plant Area are generally located on a topographic high region at approximately 720 ft AMSL.

2.2.2 Regional Land Use

Regional land use in this area is mixed, consisting of industrial, commercial, residential, and agricultural. The primary crops on agricultural property are corn, soybeans, feed grains, and

hay. Raising livestock is common in the area. Industrial and commercial uses are also important, especially near urban areas. Oil and gas (in the east central section) was discovered in 1889, however, this resource was depleted by 1912. There are several oil and natural gas fields located in the southwestern portion of Indiana.

2.2.3 Regional Geology

The Bedford Facility lies within an area of Indiana that was not glaciated (driftless area) during the last glacial period on the North American continent. The maximum progression of the Illinoian Glacial advance (the furthest advance of the Laurentide Ice Sheet) lies to the west, north, and east of the immediate region surrounding the Bedford Facility (Figure 2.2). Consequently, the surficial geology of the area generally consists of a relatively thin layer of unconsolidated deposits of sand, clay, and chert produced by the weathering of limestone bedrock (regolith) and wind-deposited silty material, known as loess. A thicker deposit of proglacial outwash, lake sediment, and recent colluvium occurs along the major stream valleys (Figure 2.3). The surficial deposits range in thickness from zero ft along bedrock outcrops to approximately 100 ft thick along Salt Creek and the East Fork of the White River (Gray, 1974).

The bedrock within the region is near the eastern margin of a structure known as the Illinois Basin. The bedrock formations in this area generally dip to the west at approximately 20 to 25 ft per mile. The Cincinnati Arch lies to the east of the Illinois Basin and covers much of Indiana (Figure 2.3) (Indiana Geological Survey, 2001).

Two regional structures are within the vicinity of the Bedford Facility, the Leesward Anticline and the Mt. Carmel fault (Figure 2.3). The Leesward Anticline is located to the north and east of Bedford and plunges to the south-southeast. The Mt. Carmel fault is a normal fault with the downthrown side located to the west of the fault. This fault is located to the north and east of the Bedford Facility and truncates the Leesward Anticline on its western side. The Mt. Carmel fault generally acts as a hinge line, with gentler dips to the west of the fault and slightly steeper dips to the east (Melhorn and Smith, 1959).

Bedrock within the immediate vicinity of the Bedford Facility (Figure 2.4) consists of the lower beds of the Middle Mississippian St. Louis Limestone (the oldest formation within the Blue River Group) and is only approximately 25 ft thick in the immediate vicinity of the Bedford Facility (Melhorn and Smith, 1959). Immediately underlying the St. Louis Limestone, and outcropping to the east of the Bedford Facility, are the Salem Limestone, the Harrodsburg Limestone, and the Ramp Creek Limestone Formations, respectively. These Mississippian formations comprise the Sanders Group. The Salem Limestone is approximately 70 to 80 ft thick, where fully preserved, the Harrodsburg Limestone is approximately 80 to 90 ft thick in the area, and the

Ramp Creek is approximately 20 ft thick (Melhorn and Smith, 1959). Figure 2.5 presents a generalized stratigraphic column for Paleozoic formations in Indiana.

The uppermost formation of The Borden Group is the Edwardsville Shale Formation. The Borden group consists of approximately 500 to 800 ft of silty, calcareous shale, interbedded with some siltstone, sandstone, and minor limestone.

The Sanders and Blue River Groups have been described to consist mostly of carbonates, with minor amounts of chert, shale, siltstone, anhydrite, gypsum, and calcareous sandstone. A thin bed of brown dolomitic limestone commonly marks the bottom of the St. Louis Limestone. The Salem Limestone, which is more massively bedded limestone, is also known as the Indiana Limestone, the Bedford Limestone, or the Oolitic Limestone and is quarried as fine building stone. However, some horizons may contain geodes, joints and solution fractures, which render the formation less suitable for quarrying (Fenelon and Bobay, 1994).

Numerous joints and fractures are present in these formations with master sets trending east-west within the Mississippian limestone, with minor sets 90 degrees to the master sets (Powell, 1976 and 2001). Numerous sinkholes can be observed on the United States Geological Survey (USGS) topographic quadrangles approximately 5 to 10 miles to the west of the Bedford Facility, with much less surface expression through the mid and eastern portions of the country. Several caverns have been mapped in Lawrence County, including one of the largest mapped caverns in the United States, the Blue Springs Cavern, located approximately five miles southwest of the City of Bedford. Other mapped caverns in the area include the Shiloh Cave, the No Sweat Cave, the Dog Hill Cave, the Donnehue Cave, and the Salt Creek Cave. Other unmapped caverns within close proximity to the Bedford Facility include: Mouse Hole Cave, located one mile east-northeast; Eighteenth Street Cave, located one and one-half miles to the south-southeast; and Armstrong Caves I and II, located one and one-half miles to the west-southwest (Etzel, 1982).

The City of Bedford lies within the physiographic province known as the Mitchell Plain, or Plateau (karst plain). The Mitchell Plain extends from near Bloomington south to the Ohio River within the State of Indiana.

2.2.4 Regional Hydrogeology

Groundwater resources are found in Lawrence County along the valleys of the major rivers or streams and within the thick Mississippian carbonate aquifer system (within the western portion of Lawrence County) and the Silurian-Devonian carbonate bedrock aquifer (within the eastern portion of Lawrence County).

There are two basic types of aquifers: unconfined and confined. Unconfined aquifers in Lawrence County generally occur along the Salt Creek and the East Fork of the White River within the proglacial outwash deposits, glaciolacustrine deposits, and recent alluvium. The tops of unconsolidated aquifers are often exposed to the surface or have a very thin covering of non-aquifer material, generally comprised of silt and clay (Fenelon and Bobay, 1994).

Groundwater flow within the confined (carbonate) aquifers takes place along the joints, fractures, and bedding planes that eventually may become enlarged by solution to cave passages or karst features. Recharge to a karst system occurs through surface openings that vary in scale from narrow, solutionally widened joints to large sinkholes. Discharge typically occurs through springs, which are solutionally widened joints or bedding planes, but may be enlarged, to sizable cave openings. Most groundwater within this aquifer system discharges to surficial water bodies, to underground water bodies, and to springs (Etzel, 1982).

2.2.5 Regional Hydrology

Most of the rivers in the East Fork White River Basin drain to the southwest. According to USGS Water Resources Division, the annual average flow recorded in 2006 at the East Fork White River gauging Station, located 7.8 miles southeast of Bedford in Lawrence County, is 4,210 cubic feet per second (cfs).

Major tributaries to the East Fork White River include the Muscatatuck River, Salt Creek, Driftwood River, Flatrock River, and the Big Blue River. Drainages in the East Fork White River Basin include the Lost River, Sugar Creek, Graham Creek, Clifty Creek, Big Creek, Indian Creek, White Creek, Brandywine Creek, and the Little Blue River.

Rivers in the eastern half of the East Fork White River Basin have a subparallel drainage. Those rivers include the Sugar Creek, Big Blue River, Little Blue River, Flatrock River, Clifty Creek, Sand Creek, Vernon Forth, Graham Creek, and the East Fork White River from Medora to Jonesville (see Figure 2.6 for the Lower East Fork White River Drainage Map).

Drainage of the Mitchell Plain in central Lawrence County (west of the Facility), northeast Orange County, and Monroe County is different from the rest of the East Fork White River Basin. In the streams that flow across the Mitchell Plain, surface water may be intercepted by swallets and diverted underground into the groundwater system or subterranean channels.

2.3 East Plant Area Environmental Setting

The East Plant Area is located on the portion of the Facility to the east of GM Drive and west of Bailey Scales Road. It is bordered to the west by GM Drive and the main plant operations, to

the north by residential properties Parcels 401 through 406, to the east by residential properties Parcels 203, 204, 3, 207, 412, 413, 414, 415, 416, 214, and 15, to the northeast by Bailey Scales Road, and to the north by Parcels 217 and 21. Figure 1.2 depicts the residential properties owned by GM.

2.3.1 East Plant Area Geology

The natural soil in the immediate vicinity of the Bedford Facility is known as Crider. Crider soil is a fine-grained, silt loam to silty clay loam. Crider soil develops on 20 inches to 45 inches of silty loess over clayey material derived from limestone (USDA, 1985).

The overburden materials at the East Plant Area consist mostly of fill materials, including clay, sand and silt. The thickness of the overburden materials varies considerably across the East Plant Area. Overburden in the East Plant Area is generally thickest in Area of Interests (AOIs) 4, 5, 6, and 7, (Figure 2.7) where foundry sand placement and other filling activities are known to have occurred historically.

The St. Louis and Salem Limestone Formations underlie the overburden within the East Plant Area. The St. Louis Limestone Formation has been identified to be highly weathered and fractured near surface. Fracture density appears to decrease with depth. The highly weathered and fractured St. Louis Limestone is underlain by the Salem Limestone (also known as the Indiana, Bedford, or Oolitic Limestone) which is the limestone formation utilized by local quarries for fine building stone. The Salem Limestone is also weathered and fractured at the erosional rock surface but is generally more massive and less weathered and fractured than the St. Louis Limestone. The Salem Limestone becomes more massive with depth. The location of both the St. Louis and Salem Formations through the East Plant Area are presented on Figure 2.8. Available bedrock topographic information is presented on Figure 2.9.

No faults have been identified in, or in the vicinity of, the East Plant Area based on a review of regional information, boring and monitoring well installation data, and the geophysical investigations completed in the East Plant Area.

Additional information on the East Plant Area geology has been previously presented in the Soil Technical Memorandum (TM) (CRA, April 14, 2004), RCRA Facility Investigation (RFI) Work Plan (CRA, October 29, 2001), the Draft Collection Trench System 95% Design Report (CRA, November 2007), and the RFI Report (GHD, September 30, 2015). Additional geophysical and geotechnical investigations along the alignment of the proposed Groundwater Trench Collection System have been completed as part of the RFI Work Plan. The investigation identified weathered bedrock containing solution enlarged fractures near the surface of the

bedrock with more massive bedrock at depth with fewer and tighter fractures. This information serves as the basis for determining the depth of the Pilot Trench.

2.3.2 East Plant Area Hydrology

The Facility is situated on a topographic ridge, such that the Facility is drained by surface runoff primarily to the east and northeast in small valleys, which are tributaries of Bailey's Branch of Pleasant Run Creek. According to Facility personnel, surface water runoff from the Facility to the west of the Facility is minimal. The ridge top is approximately 150 ft to 185 ft higher than the valley bottom, located approximately one-half mile northeast of the Bedford Facility. Stormwater from the manufacturing portions (e.g., improved surfaces) of the Bedford Facility is currently collected in the Stormwater Lagoon (AOI 10). Water from the Stormwater Lagoon is either recycled back to the Plant for reuse, or treated at an on-Facility treatment system and discharged under a National Pollutant Discharge Elimination System (NPDES) permit. Clean stormwater from non-operational portions of the Facility (i.e., the East Plant Area Cover System) drains directly to Tributary 3 or Bailey's Branch Creek of Pleasant Run Creek after draining through a series of swales and detention basins designed to limit the peak flow to downstream receivers during precipitation events.

As a result of the existing topography and the proximity of Bailey Scales Road, the Pilot Trench will intersect the existing detention basin network, specifically Detention Bain 4 (DB-4). Clean surface water runoff collected upstream of DB-4 (from the East Plant Area Cover System) will bypass the Pilot Trench working platform before being released into Tributary 3 during construction. The two culverts from DB-3 and DB-5 that discharge to DB-4 will be plugged and pumps installed into DB-3 and DB-5 for pumping. The selected contractor will be required to pump the water from a 24-hour 100-year storm event, as described in the East Plant Area Cover System Design (CRA, April 18, 2008) through the by-pass piping (around the construction limits) and into Tributary 3.

The detention basins are essentially dry ponds by design and contain a low flow channel, which allows for connectivity through underground culverts. Prior to construction of the Pilot Trench, the contractor will need to prevent inflow into DB-4 (and thus into the Pilot Trench excavation) during construction. Furthermore, once the surface within DB-4 has been disturbed for construction purposes, storm water within the capture area of DB-4, itself, as well as the area within the construction limits for the Pilot Trench will be contained and treated for potential polychlorinated biphenyl (PCB) impact prior to discharge to Tributary 3.

Section 3.0 Design Data Collection Activities

Multiple sampling events were conducted as part of the RFI Work Plan (CRA, 2001) to support the design of the proposed Perimeter Groundwater Trench Collection System. Sampling was completed in accordance with the Scope of Work and Field Sampling Plan presented in the RFI Work Plan. This section briefly presents the environmental, geotechnical, and geophysical results for the samples collected during the RFI.

3.1 Perimeter Groundwater Trench Collection System Coreholes

Coreholes were installed as part of RFI Addendum No. 9 and No. 12, using hollow-stem auger (HSA) drilling technique, along the alignment of the Perimeter Groundwater Trench Collection System. Additional geotechnical and geophysical data were collected along the proposed future alignment of the Perimeter Groundwater Trench Collection System from coreholes completed in July through September 2012 (see Figure 3.1, CH-45 to CH-58). The corehole drilling program provided information on the depth to bedrock and the depth to competent bedrock needed to support the design of the Perimeter Groundwater Trench Collection System. The new corehole locations installed to support the proposed future Perimeter Groundwater Trench Collection System alignment are presented on Figure 3.1.

The sample location and subsurface conditions at each boring were recorded in the field at the time of collection by the field geologist. Drilling logs (including coring logs) for locations installed along and in close proximity to the Pilot Trench alignment are provided in Appendix A.

To provide an approximate range of hydraulic conductivity, several assumptions were used for the preliminary design of the Perimeter Groundwater Trench Collection System, based on the corehole data collected. Actual conditions may vary once the Pilot Trench and full-length Perimeter Groundwater Trench Collection System are installed. Hydraulic conductivity values above the competent bedrock were conservatively estimated between 6 x 10⁻⁴ centimeters per second (cm/s) and 6 x 10⁻⁵ cm/s based on testing completed at the Site. The current hydraulic gradient for the shallow groundwater is approximately 0.25 ft/ft and the area of the saturated thickness is conservatively assumed to be averaged approximately 40 ft over the 800 foot length (for the Pilot Trench). This yields flow estimates for the Pilot Trench between approximately 71 gallons per minute (gpm) to 7 gpm (102,000 gallons per day (gpd) to 10,000 gpd). The length of the full proposed Perimeter Groundwater Collection Trench is approximately 3,700 ft, thereby yielding an approximate flow of 330 gpm to a low estimate of 33 gpm, using the same assumptions.

It should be noted, that the existing groundwater collections system (e.g., Site Source Control [SSC] systems and Vault), currently operates at an average flow rate of 25 to 50 gpm (31 gpm in 2014) with maximum estimated flows rates of up to 184 gpm in 2014. If the hydraulic

conductivity for bedrock was 6×10^{-3} cm/s in the bedrock the flow rate would be increased to 710 gpm for the Pilot Trench and 3,300 gpm for the whole trench. As a result, CRA estimates that the whole Perimeter Groundwater Trench Collection System would operate between 500 gpm and 1,000 gpm (e.g., Pilot Trench, being 21 percent of the length would produce approximately 100 to 200 gpm).

Implementation of the Pilot Trench will be key to understanding what rate of water the whole trench will produce. Completed calculations for the infiltration rates, conveyances and pumps will be included as an Appendix to the revised Design Report for the Perimeter Groundwater Trench Collection System.

3.2 Geotechnical Samples

At select locations, bedrock samples of competent and weather-fractured bedrock were collected for uniaxial compression testing to provide information on the strength of bedrock. The bedrock compression results varied between 45.3 and 166.5 mega Pascal (MPa). Results for testing along the Pilot Trench Study area are presented in Appendix B.

3.3 Downhole Geophysical Logging

Downhole geophysical logging was conducted at the locations shown on Figure 3.1. Where the bedrock was more competent (usually at depth), logging was conducted on longer sections of the bedrock. A full suite of logs was also run upon completion of the borehole to total depth. COLOG, a Division of Layne-Christensen Company, of Golden, Colorado provided the equipment and engineer/operator for downhole geophysical logging.

The geophysical logging consisted of measurements of the borehole diameter (caliper), the rock's natural radioactivity (natural gamma-ray), the rock's natural resistivity (short and long-normal), single-point resistance (spr), fluid spontaneous (or self) potential (sp), fluid temperature, and specific conductance. Additionally, logging runs also utilized a digital acoustic televiewer (ATV) and final logging runs (i.e., from total depth) also utilized a borehole image processing system (BIPS). Logs from each run were printed in the field (except the BIPS) upon completion and reviewed by the field geologist prior to further advancement of the borehole.

Geophysical logs for locations near the Pilot Trench are presented in Appendix C.

3.4 Packer-Pressure Testing

East Plant Area hydraulic conductivity testing was performed in selected overburden and bedrock monitoring wells using packers to isolate a test interval. Specific intervals were selected on the basis of inspecting both the drilling core logs and the downhole geophysical test

results or adjacent holes. The results of the hydraulic conductivity testing can be found in Appendix D.

3.5 Environmental Samples

Samples for PCB analysis were collected from boreholes at two foot intervals (e.g., 0 to 2 ft below ground surface [bgs], 2-4 ft bgs, 4-6 ft bgs) for overburden from select boring locations. A summary of the soil sample analytical results for locations adjacent to the proposed Pilot Trench is presented in Table 3.1 (note that a number of these locations have been removed or covered during various East Plant Area IMs). Groundwater samples have been collected from select monitoring wells and analyzed for PCBs. Additional groundwater sampling continues under the Environmental Indicator CA750 monitoring. The groundwater sampling locations are presented on Figure 3.2 and results are presented on Table 3.2.

Section 4.0 Pilot Trench Design

The Perimeter Groundwater Trench Collection System is designed to work in conjunction with the East Plant Area IM (source removal and Cover System) to provide horizontal control of groundwater transport. Source removal activities will minimize contact between higher concentration wastes with groundwater, while the Cover System will reduce groundwater recharge, reducing the volume of groundwater collected by the Perimeter Trench Collection System. The Cover System construction was completed in 2013. The Pilot Trench Study will consist of installing a short section of the Pilot Trench Collection System in order to evaluate potential future performance of the water collection and treatment system.

The Pilot Trench Study will consist of a continuous gravel-filled trench that will span through DB-4. A 6-inch perforated high density polyethylene (HDPE) pipe will be placed at the bottom of the trench to facilitate groundwater conveyance to the proposed Wet Well (WW). Collection sumps, complete with float-controlled pumping systems, will be placed at the WW to pump the water to an on-Site water treatment facility. Collected non-aqueous phase liquids (NAPL) will be separated from the collected water using an oil/water separator prior to water treatment and transportation off-Site for proper disposal.

The Perimeter Groundwater Trench Collection System location and alignment have been determined based on bedrock topography, the elevation of competent bedrock, and groundwater flow directions. By design, the trench runs through areas such as grikes, open fractures, solution cavities and vugs. The purpose is to collect groundwater potentially conveyed by these features, providing efficient means to drain upgradient water into the trench. The competent rock will be located at the base of the trench. If an "open" feature is

encountered at the base of the trench, it will be sealed prior to placement of the pipe and drainage media. Based on the available inspection data, an onsite geologist will review the existing records (in including new observations made pre- and post-cutting) to make the determination if the trench has been extended too deep, requiring additional grout to bring the base back into the competent bedrock layer, or if the base of the trench has not yet extended into the competent bedrock layer.

The alignment for the Pilot Trench is based on the following considerations:

- The nature and extent of impacted groundwater and preferential flow pathways based upon the RFI and property boundaries
- The location of the perimeter of the East Plant Area Cover System
- The number and location of RA SSC systems which have been installed
- The location and depth of competent rock along the horizontal alignment of the Perimeter Groundwater Trench Collection System alignment
- Constraints of the bedrock trench construction methodology and bedrock trenching equipment (e.g., number of bends within the trench alignment, ability of the equipment to make turns)

The plan view of the proposed alignment of the Perimeter Groundwater Trench Collection System, highlighting the Pilot Trench is presented on Figure 3.1. The profile of the Pilot Trench alignment is presented on Figures 4.2 and 4.3. Design Drawings are provided in Appendix E.

The bottom of the Pilot Trench is designed to be terminated within the competent rock. A permeability increase was noted in the packer testing results from CH-21 (2×10^{-5} cm/s) and CH-50 (8×10^{-5} cm/s) below the proposed bottom of the Pilot Trench. Both coreholes were completed in the Harrodsburg Formation, which is below the competent Salem Formation. CH-50 was advanced into competent rock. However, the last core retrieved from CH-50 showed potential permeability (i.e., vertical fracture and vug) at the bottom of the corehole below the competent rock. Based on previous knowledge regarding the formation in the area (e.g., swallets and the Spring 18 Area) further advancement of CH-50 was terminated to prevent potential downward migration of groundwater to the lower formation. During the advancement of CH-21, the field geologist determined the corehole had been advanced into competent rock. It wasn't until the packer-pressure testing when the increased permeability was noted and that the corehole had been actually advanced past the competent rock.

The bottom elevation of the trench is designed to be completed within competent rock in these locations, above the bottom elevation of the exploratory corehole. In addition, to prevent

potential downward migration of groundwater along the length of the Pilot Trench, a physical barrier will be placed along the downgradient side of the trench and a minimum 6-inch thick cement-bentonite grout layer will be installed along the Pilot Trench floor to provide a low-permeability seal and to key in the physical barrier. The minimum 6-inch grout barrier was selected as a thickness that would be measureable from the surface of the construction platform. In addition, this minimum thickness would also decrease the risk of extending the grout layer above the layer of the competent bedrock and blocking open fractures. Consequently, the physical barrier will be utilized to prevent upgradient water traversing across the trench and to prevent collection of downgradient water beyond the trench, as well as impeding the vertical migration of groundwater downward beneath the bottom of the physical barrier across the length of the trench.

After clearing out the cuttings, the trench bottom/floor will be surveyed prior to placement of the 6-inch grout barrier. A second survey will be completed following placement of the grout to confirm the grout thickness. Additionally, the survey will also provide the slope of the trench bottom and will be used to determine whether additional grout is required to ensure the trench floor is leveled to effectively transport water to the downstream WW.

It is anticipated that the physical barrier placed on the downgradient side of the Pilot Trench would be a plastic material of some sort, however it is expected that installation of a standard HDPE liner, similar to that placed horizontally for landfill cover systems, would be difficult to place in this vertical application. Installation without damage, either during movement of the liner from a horizontal position for seaming to the vertical position or during installation along the potentially jagged vertical face of the bedrock trench, would be likely, rendering the impermeable liner system ineffective. There are also safety considerations for lowering the liner while attempting to steer it down into the trench while completing seams, all while attempting to avoid rips. Therefore, the physical barrier will be specified to be a more rigid plastic material that is intended for vertical applications. This could either be a vertical geomembrane (HDPE) barrier system (e.g., GSE Gundwall or CurtainWall) that is intended for trench applications and includes mechanical interlocks between panels (in lieu of field seaming) or plastic (vinyl or fiber-reinforced polymer - FRP) sheet piling with hydrophilic or viton seals to create an impermeable barrier. It would also be expected that in addition to the grout seal at the base of the Pilot Trench, that a grout material would likely be placed behind the physical (plastic) barrier to fill gaps between the barrier material and the downgradient rock face. Above the bedrock surface, the use of drainage media sand will be implemented to serve as a vertical extension of the bedrock trench, following completion of the bedrock trench itself. The drainage media sand will be placed to the angle of repose and its intent would be to collect the lateral migration of groundwater within the overburden regime. The remainder of the working

platform constructed within the overburden soils will be backfilled with the material removed during initial excavation for the working platform.

Where the trench falls within the limits of the East Plant Cover System, the area will be restored consistent with the Cover System design (previously approved by U.S.EPA) which will include components as follows (bottom to top):

- soil barrier layer compacted clay (12 inches);
- 60 ml Linear Low Density Polyethylene Liner (LLDPE);
- drainage geocomposite;
- common fill (12 inches); and
- topsoil (6 inches) and vegetative cover.

The East Plant Area Cover System Design Report (April 18, 2008) provides a detailed description of the Cover System design elements. As-built construction details for the East Plant Cover System are provided in the Construction Certification Report East Plant Area Cover System (March 2, 2015), currently under U.S.EPA review.

4.1 Basis of Pilot Trench Profile Selection

In selecting the elevation of the Pilot Trench bottom, available data from coreholes and monitoring wells were utilized to identify the zone in which competent rock was encountered. Competent rock is rock that does not have significant fractures which would facilitate significant water movement through the trench or allow significant downward migration of impacted water. Coreholes in close proximity of the proposed Pilot Trench Study alignment that were evaluated included, from north to south, CH-50, CH-23, CH-21, CH-60, CH-19, and CH-51. Other coreholes in the vicinity of the Pilot Trench included CH-49, CH-22, CH-20, CH-41, CH-15B, and CH-52. Coreholes within the trench footprint, not already abandoned, will be sealed with a cement/bentonite grout to the elevation of the proposed Pilot Trench, prior to trench installation.

The proposed Pilot Trench elevations will allow for gravity drainage from the north and south ends of the trench to the WW within this zone of competent rock. Collected groundwater within the Pilot Trench will then be pumped through a forcemain to the on-Site water treatment system for treatment prior to discharge. The depth and grade of the Pilot Trench in this location was determined to facilitate installation of the Pilot Trench at a depth that most efficiently captures water from the East Plant Cover System area.

4.2 Pilot Trench Alignment Selection

The following sections present a description of each data point used in determining the minimum and maximum elevations for the groundwater collection system in the Pilot Trench, and the criteria used for the basis of selection. The design data collected as described in Section 3.0 includes visual inspection of the retrieved core, groundwater elevation measurements, downhole geophysical logging, packer-pressure testing, and groundwater analytical results.

4.2.1 Pilot Trench Bedrock Descriptions

The alignment of the Pilot Trench will run approximately along 800 ft along station (STA) 0+82 and STA 8+03 (Figure 4.1 and Drawing C-05 [Appendix E]). The information at each corehole location, relevant to the design of the Pilot Trench, is summarized below. Where the corehole was terminated in competent rock, the summary below (from north to south) identifies the bottom elevation of competent rock as the bottom elevation of the corehole, although competent rock may extend below that elevation.

CH-50

• This corehole was installed along the proposed Pilot Trench alignment. The limestone consists of the Salem Formation to a total depth of 34.2 ft. Evaluation of the core and analysis of the geophysical logs showed several horizontal fractures and three vertical fractures near the top of the core. A vertical fracture was also observed near the total depth of the corehole. Geophysical results showed a larger opening at a depth of approximately 10 ft and packer-pressure testing showed a slight intake at the bottom of the corehole, below the proposed bottom elevation of the trench in this area. Analysis revealed that competent rock was obtained prior to total depth and that the bottom of the corehole ended up going beyond the elevation of competent rock into a slightly more permeable formation beneath it. Refer to additional discussion in Section 4.0 regarding low permeability seals to be used in the trench bottom and the downgradient wall.

00+81.99 ft

CH 50 Summary

Location (STA)

	00.01.55.16
Offset from Trench Centerline	11.81 ft West
Total Depth of Hole	34.2 ft
Elevation – top of corehole/MW	634.8 ft AMSL
Elevation – top of bedrock	631.8 ft AMSL
Elevation – top of competent rock	609.8 ft AMSL

Elevation – bottom of competent rock	604.8 ft AMSL
Elevation – bottom of corehole/MW	600.6 ft AMSL
Proposed Trench Elevation	607.5 ft AMSL
Minimum hydraulic conductivity	<5.84 x 10 ⁻⁶ centimeters
within zone of competent rock	per second)(cm/s)

CH-23

This corehole was completed to a depth of 26.9 ft. One horizontal fracture was noted during the core inspection. The limestone cored at this location consists of the lower portion of the Salem Formation and the upper portion of the Harrodsburg Formation. The results of the packer-pressure testing indicated a hydraulic conductivity less than the limits of testing through the entire corehole.

CH 23 Summary

Location (STA)	2+33.46
Offset from Trench Centerline	8.29 ft East
Total Depth of Hole	26.9 ft
Elevation – top of corehole/MW	613.5 ft AMSL
Elevation – top of bedrock	610.0 ft AMSL
Elevation – top of competent rock	610.0 ft AMSL
Elevation – bottom of competent rock	total depth
Elevation – bottom of corehole/MW	586.6 ft AMSL
Proposed Trench Elevation	600.0 ft AMSL
Minimum hydraulic conductivity within zone of competent rock	<3.06 x 10 ⁻⁶ cm/s

CH-21

• This corehole was completed to a depth of 45.5 ft. The limestone at this location consists mostly of the Harrodsburg Formation with approximately one foot of Salem at the very top. The results of this boring showed competent bedrock to an approximate depth of 25 ft. A fractured zone was encountered between approximately 25 and 36 ft, below the proposed bottom elevation of the trench in this area. Analysis revealed that competent rock was obtained prior to total depth and that the bottom of the corehole ended up going beyond the elevation of competent rock into a slightly more permeable formation beneath it. Refer

to additional discussion in Section 4.0 regarding low permeability seals to be used in the trench bottom and the downgradient wall.

CH 21 Summary

Location (STA)	3+13.02
Offset from Trench Centerline	0.02 ft East
Total Depth of Hole	45.5 ft
Elevation – top of corehole/MW	612.1 ft AMSL
Elevation – top of bedrock	600.6 ft AMSL
Elevation – top of competent rock	600.6 ft AMSL
Elevation – bottom of competent rock	575.1 ft AMSL
Elevation – bottom of corehole/MW	566.6 ft AMSL
Proposed Trench Elevation	596.49 ft AMSL
Minimum hydraulic conductivity within zone of competent rock	< 2.05 x 10 ⁻⁶ cm/s

CH-60

This corehole was installed along the proposed Pilot Trench alignment. The limestone cored at this location consists of approximately 23 ft of the Salem Formation. Analysis of the core and geophysics completed at this location showed a few small vugs. However, the results of the packer-pressure testing were negative for water intake to the formation throughout the corehole tested.

CH 60 Summary

Location (STA)	4+19.96
Offset from Trench Centerline	6.35 ft East
Total Depth of Hole	30.0 ft
Elevation – top of corehole/MW	620.2 ft AMSL
Elevation – top of bedrock	613.2 ft AMSL
Elevation – top of competent rock	609.7 ft AMSL
Elevation – bottom of competent rock	total depth
Elevation – bottom of corehole/MW	590.2 ft AMSL
Proposed Trench Elevation	595.07 ft AMSL

Minimum hydraulic conductivity within zone of competent rock

<2.20 x 10⁻⁶ cm/s

CH-19

This corehole was completed to a depth of 31.7 ft. The limestone at this location consists of the lower portion of the Salem Formation and approximately 1.5 ft of the upper Harrodsburg Formation at total depth. Two horizontal fractures were observed near the contact of these two formations. The results of the packer-pressure testing showed hydraulic conductivity values of less that the limits of the testing through this section.

CH 19 Summary

Location (STA)	4+73.18
Offset from Trench Centerline	43.74 ft West
Total Depth of Hole	31.7 ft
Elevation – top of corehole/MW	625.0 ft AMSL
Elevation – top of bedrock	616.5 ft AMSL
Elevation – top of competent rock	616.5 ft AMSL
Elevation – bottom of competent rock	total depth
Elevation – bottom of corehole/MW	593.3 ft AMSL
Proposed Trench Elevation	596.08 ft AMSL
Minimum hydraulic conductivity within zone of competent rock	<1.43 x 10 ⁻⁶ cm/s

CH-51

This corehole was installed along the revised Pilot Trench alignment. The limestone cut at this location consists of the Salem Formation to a total depth of 39.9 ft. Several horizontal fractures were observed from the retrieved core. The results of the geophysical testing did not indicate that any of the fractures were open. Packer-pressure testing was completed at the bottom of the corehole and indicated a slight water take to the formation upon low pressure and higher pressure. The middle pressure tested showed no water take to the formation, which indicates an initial take filling the fractures and a slight water take at a higher pressure.

СН	51	Sum	ma	ry
----	----	-----	----	----

Location (STA)	8+03.70
Offset from Trench Centerline	13.92 Ft
Total Depth of Hole	39.9 ft
Elevation – top of corehole/MW	644.3 ft AMSL
Elevation – top of bedrock	637.3 ft AMSL
Elevation – top of competent rock	637.3 ft AMSL
Elevation – bottom of competent rock	total depth
Elevation – bottom of corehole/MW	604.4 ft AMSL
Proposed Trench Elevation	607.0 ft AMSL
Minimum hydraulic conductivity within zone of competent rock	<1.51 x 10 ⁻⁶ cm/s

The following nearby coreholes were also investigated as part of the evaluation of the proposed trench alignment:

CH-49

This corehole was installed along the revised full trench alignment. The limestone cored as part of this evaluation consists of the Salem Formation to a depth of 34.2 ft below ground elevation (606.9 ft AMSL). There were seven horizontal fractures noted and one vertical. The results of the geophysical acoustic logging showed that the vertical fracture may be partially open at a depth of 19.8 ft. No remaining fractures on the geophysical logs showed any evidence of being open. The results of the packer-pressure testing were negative for permeability at the limits of the testing.

CH 49 Summary

Location (STA)	N/A
Offset from Trench Centerline	N/A
Total Depth of Hole	34.2 ft
Elevation – top of corehole/MW	641.1 ft AMSL
Elevation – top of bedrock	637.6 ft AMSL
Elevation – top of competent rock	625.1 ft AMSL
Elevation – bottom of competent rock	total depth
Elevation – bottom of corehole/MW	606.9 ft AMSL

Proposed Trench Elevation N/A

Minimum hydraulic conductivity
within zone of competent rock

<1.67 x 10⁻⁶ cm/s

CH-22

Corehole CH-22 was installed as part of the original trench alignment evaluation. The limestone cored at this location consist of the lower Salem and upper Harrodsburg Formations (transition zone). Several stylolites were observed along the length of the core. A few horizontal fractures, which increase in frequency with depth were observed. One vertical fracture was also detected. None of the structural features encountered indicated evidence of groundwater flow. Both core runs at this location resulted in 100% core recovery and 100% rock quality index (RQD). Both downhole geophysical logging and packer-pressure testing were conducted at this location upon completion of the coring. Analysis of these data suggest that the upper portions of the corehole are competent and do not show evidence of any significant secondary permeability features. The packer-pressure pressure testing of the lower 3 ft (583.8 to 583.8 ft AMSL) of this corehole, however, did show increased permeability (4.4 x 10⁻⁴ cm/s). The upper portion of this corehole shows more competent rock in this area between an approximate elevation of 588.0 and 584.0 ft AMSL. The lower limestone units have not been shown to be impacted with PCBs.

CH 22 Summary

Location (STA)

Offset from Trench Centerline

N/A

Total Depth of Hole

32.6 ft

Elevation – top of corehole/MW

Elevation – top of bedrock

Elevation – top of competent rock

Elevation – top of competent rock

Elevation – bottom of competent rock

Elevation – bottom of corehole/MW

580.8 ft AMSL

Proposed Trench Elevation N/A

CH-20

Corehole CH-20 was installed as part of the original trench alignment evaluation. The limestone cored at this location consists of the lower portion of the Salem Formation and the upper portion of the Harrodsburg Formation (transition zone). Four horizontal fractures were encountered to the total depth of 38 ft bgs (581.2 ft AMSL). None of these fractures exhibited evidence of groundwater flow. Both core runs resulted in 100% core recovery and 100% RQD. No geophysical logging or packer-pressure testing was completed at this location. Based on the above analysis, competent rock has been identified between 596.2 and 581.2 ft AMSL.

CH-20 Summary

Location (STA)	N/A
Offset from Trench Centerline	N/A
Total Depth of Hole	38.0 ft
Elevation – top of corehole/MW	619.2 ft AMSL
Elevation – top of bedrock	605.2 ft AMSL
Elevation – top of competent rock	596.2 ft AMSL
Elevation – bottom of competent rock	total depth
Elevation – bottom of corehole/MW	581.2 ft AMSL
Proposed Trench Elevation	N/A

Minimum hydraulic conductivity

Not determined within within zone of competent rock

zone of competent rock

CH-41

Corehole CH-41 was installed as part of the original trench alignment evaluation. The geology at this location consisted of the Salem Formation to the total depth of approximately 26.2 ft bgs (604.9 ft AMSL). One fracture was encountered through the approximate 20 ft of core collected, which was an over 1-foot long oxidized vertical fracture that was encountered at a depth of approximately 6 ft bgs (625.1 ft AMSL). The percent recovery and RQD were both 100% for both core runs. No geophysical logging or packer-pressure testing was completed at this location. Based on the above results, competent rock was identified between 620 and 604.9 ft AMSL, below the depth of the vertical fracture.

CH-41 Summary

Location (STA) N/A

Offset from Trench Centerline N/A

Total Depth of Hole 26.2 ft

Elevation – top of corehole/MW 631.1 ft AMSL
Elevation – top of bedrock 628.1 ft AMSL
Elevation – top of competent rock 620.0 ft AMSL

Elevation – bottom of competent rock total depth

Elevation – bottom of corehole/MW 604.9 ft AMSL

Proposed Trench Elevation N/A

Minimum hydraulic conductivity

Not determined within within zone of competent rock

zone of competent rock

CH-15B

Corehole CH-15B was installed as part of the original trench alignment evaluation. The bedrock at this location consists of the upper portion of the Salem Formation. Two horizontal fractures were encountered; one at approximately 7.5 ft bgs (636.2 ft AMSL) showed evidence of groundwater flow (water entered the corehole); and the other at an approximate depth of 21.7 ft bgs (622 ft AMSL) that did not show any signs of groundwater flow (water did not enter the corehole at this fracture). The percent recovery and RQD for both core runs completed were 100%. No geophysical logging or packer-pressure testing was completed at this location. Based on the above results, competent rock was identified between 633.7 and 617.4 ft. AMSL.

CH-15B Summary

Location (STA) N/A Offset from Trench Centerline N/A Total Depth of Hole 26.3 ft Elevation – top of corehole/MW 643.7 ft AMSL 640.5 ft AMSL Elevation – top of bedrock 633.7 ft AMSL Elevation – top of competent rock Elevation – bottom of competent rock total depth Elevation - bottom of corehole/MW 617.4 ft AMSL **Proposed Trench Elevation** N/A

Minimum hydraulic conductivity

Not determined within within zone of competent rock

zone of competent rock

CH-52

• This corehole was installed immediately along the revised trench alignment. The limestone cut at this location consists of the Salem Formation to a total depth of 55 ft. Several horizontal fractures were observed from the retrieved core. The results of the geophysical testing did not indicate that any of the fractures were open. Packer-pressure testing was completed at 30 to 35 ft, and 50 to 55 ft bgs, with negative results for permeability at the limits of the testing at both intervals.

CH-52 Summary

Location (STA)	N/A
Offset from Trench Centerline	N/A
Total Depth of Hole	55 ft
Elevation – top of corehole/MW	668.3 ft AMSL
Elevation – top of bedrock	665.3 ft AMSL
Elevation – top of competent rock	644.3 ft AMSL
Elevation – bottom of competent rock	total depth
Elevation – bottom of corehole/MW	613.3 ft AMSL
Proposed Trench Elevation	N/A
Minimum hydraulic conductivity within zone of competent rock	<1.22 x 10 ⁻⁶ cm/s

Section 5.0 Construction Quality Assurance

The Construction Quality Assurance (CQA) Plan for the Pilot Trench is included in Appendix F. The CQA Plan details the inspection and testing needed to verify the material quality and installation of the Perimeter Groundwater Trench Collection System components. The CQA Plan also details the methods that will be employed to verify the Pilot Trench is completed to a sufficient depth to encounter competent bedrock.

5.1 Bedrock Quality Verification

Electrical Resistivity Imaging (ERI) and Ground Penetrating Radar (GPR) surveys will be completed along the proposed Pilot Trench alignment following construction of the working platform (for the trenching machine) but prior to bedrock removal/cutting if it can be done safely (i.e., having personnel in the trench and depending on slope stability and water entering the excavation). The surveys will assist in augmenting the bedrock competency assessment along the length of the Pilot Trench, including the delineation of potential groundwater migration pathways, such as fractures and voids. In areas in which potential groundwater migration pathways are identified which could impact trench design, the trench design will be modified to address these features (e.g. by changing the depth of the trench or other measures).

To the extent practical, a remote video camera will be used to perform a video inspection of the bottom of the trench after completion of cutting segments. Based on research of options for remote inspection of the trench cut, including discussions with the rock trenching contractor, a remote video camera was selected as the best option. If significant fractures are identified, they will be assessed and it will be determined if actions, such as grouting, or increasing the depth of the trench, are required to address the presence of the fracture.

It should be noted that following excavation/trenching, every attempt will be made to survey the bottom of the trench with at least video inspection, and where possible, geophysical surveys. As it is not yet known what conditions will be like in the trench bottom, geophysical studies cannot be guaranteed. For these reasons, GPR and resistivity surveys will be completed along the entire length of the Pilot Trench before excavation/trenching. The GPR and remote camera will be attempted again post-trench cutting, as trench work progresses.

5.1.1 Electrical Resistivity

ERI surveys utilize a number of evenly spaced electrodes, which are configured in a straight line or array. This procedure is conducted by applying a current (I) to two electrodes and measuring the potential difference (V) across a series of remaining electrode pairs. A distribution of the apparent resistivity (ρ) in the subsurface can then be calculated and inversion software can be used to produce a modeled section of apparent resistivity (ρ_{α}) values.

Bedrock and overburden units tend to fall into known ranges of apparent resistivity values. Clay has a very low resistivity (10 to 50 Ohm-m), while limestone tends to be significantly higher. Weathered and fractured limestone generally has moderate resistivity values (100 to 400 Ohm-m), with values increasing with the competency of the bedrock (to approximately 5000 Ohm-m). Voids, if present, tend to show up as anomalously high resistivity zones, as air is

quite resistive, or low resistivity zones if in-filled with clay. ERI has relatively good resolution, although this is dependent on the spacing of the electrodes and type of array used. The depth of investigation is also dependent on the electrode spacing, with a larger spacing producing a greater depth of penetration (Sharma 1997).

The electrical resistivity (ER) survey will be completed along the proposed Pilot Trench alignment prior to commencement of excavation activities. The survey will be completed using a Syscal R1 Plus receiver and a 72 electrode spread. The Syscal R1 Plus is a multi-electrode resistivity imaging system, with an internal switching board and a 200 Watt power source. The output current is automatically adjusted to optimize the input voltage values and ensure the best measurement quality. This system is designed to automatically survey pre-defined sets of resistivity measurements with roll along capability.

The ER survey parameters will be configured to achieve depths of investigation ranging from 30 to 50 feet bgs, or at least 20 feet below the base of the constructed Pilot Trench. The deeper investigative depths will be employed over zones where the bedrock to be trenched is thicker, and the shallower depths of investigation may be employed where the bedrock is thinner (i.e. near the trough of the trench profile). Electrode spacings ranging from 3 to 5 feet will be utilized to achieve these depths of investigation, and high resolution results will be obtained by using a Wenner-Schlumberger array. The measured apparent resistivity data will be imported into an inversion software program (RES2DINV), and processed to yield a modeled profile section of resistivity along the proposed Pilot Trench alignment.

5.1.2 Ground Penetrating Radar

GPR systems utilize pulsed electromagnetic (EM) waves, which are emitted from a transmitting antenna. They are propagated into the ground and travel at velocities determined by the electrical properties of earth materials. If, as a wave moves downward, it hits a buried object or boundary between materials with different electrical properties, part of the wave energy is reflected back to the surface and is detected by a receiving antenna. The reflected wave is stored digitally, and processed as a trace of signal versus amplitude. As the antennas are moved along a survey line, a series of traces are recorded at discrete points. When presented collectively, these traces display a profile of the subsurface. With respect to void detection, a significant void appears as an intensified response or reflector, due to the airwave response created by the void. Fractures appear as traces that are non-parallel to the bedding plane, and heavily weathered zones show a lack of continuity in the bedding planes, and may show some signal attenuation as well.

GPR has a comparatively higher resolution than many other geophysical methods, as features such as individual fractures can be detected and accurately located. The resolution of a GPR

system is dependent on the frequency of the antenna, with lower frequencies providing greater depth of investigation, but reduced resolution. The depth of investigation is also dependent on the nature of the subsurface, with conductive materials (e.g., clay) attenuating the signal and dramatically reducing the depth of investigation (Sharma 1997).

The survey will be undertaken in short sections, and will utilize a Ground Explorer GPR system equipped with an 80 MHz high dynamic range (HDR) shielded antenna and a GX Controller for data acquisition. The width of the 80 MHz HDR antenna is approximately 2.5 feet, which can be accommodated by the proposed width of the Pilot Trench. The 80 MHz HDR antenna has a depth of penetration in bedrock that typically ranges from 50 to 60 feet bgs, which is below the base elevation of the proposed Pilot Trench. Consequently, the initial GPR survey will be completed along the alignment of the proposed Pilot Trench prior to commencement of excavation activities, to assess bedrock quality. Furthermore, once trenching activities have commenced, additional GPR surveying will be completed at the base of the excavation to assess the bedrock quality beneath the Pilot Trench prior to trench completion.

Section 6.0 Pilot Trench Construction

This section outlines general requirements for performing operations required to construct the Pilot Trench, utilizing the bedrock trenching excavation methodology.

6.1 Qualification of Contractor

A general contractor will be selected that has sufficient expertise, competent experienced personnel, and proven methodologies and equipment to manage the overall construction of the project including site preparation, water management, materials procurement and soil handling. A specialized trenching contractor will be retained to provide personnel and equipment to perform the bedrock trenching activities.

CRA will supervise the construction activities, provide engineering consulting (design development, contractor procurement, survey evaluation), and conduct the necessary quality control inspections and testing. As the on-Site representative, CRA is knowledgeable in: (1) construction equipment, (2) excavation and backfill operations, and (3) testing for quality control of groundwater collection trenches constructed using a bedrock trenching excavator. The work will be coordinated with other site activities to benefit from shared resources and support facilities. This is discussed in further detail in Section 7.0.

6.2 Materials

6.2.1 Cement-Bentonite Grout

An approximate 6-inch thick cement-bentonite grout layer will be installed along the length of the Pilot Trench floor to provide a low-permeability seal for bedrock fractures, minimize exfiltration, and maximize groundwater capture collection and conveyance through the forcemain to the WW. Cement-bentonite grout will be made from Portland cement and sodium bentonite powder and mixed using the manufacturer's recommended volume of water to achieve an optimal seal. The slurry will contain at least 20 percent solids by weight and have a density of 3.4 kg/L (9.4 lbs/gallon) or water or greater.

6.2.2 Physical Barrier

A physical barrier will be installed on the downgradient wall of the Pilot Trench to serve as a water resistant membrane to prevent groundwater entering the trench from traversing beyond the outer (downgradient) trench wall (Appendix E, Drawing C-07). A minimum 6-inch grout layer will be placed at the base of the Pilot Trench to prevent water from circumventing the barrier system by going under the installed physical barrier. The physical barrier should also prevent groundwater downgradient of the trench from entering the trench, thus minimizing the quantity of water to be treated.

6.2.3 Drain Collection Pipe

A 6-inch diameter HDPE drain pipe will be installed within the bedrock trench backfill to convey groundwater to the WW. The drain pipe will be solid wall slotted (or perforated) polyethylene pipe. Pipe joints will be butt-fusion welded. The pipe will meet requirements of American Society for Testing and Materials (ASTM) D 3350 for Grade PE3408 pipe with a minimum standard diameter ratio (SDR) of 11 (Appendix E, Drawing C-07). The SDR or pipe thickness will be adequate to withstand the burial depth without excessive deformation. Design calculations for the buried piping are presented in Appendix G.

6.2.4 Trench Backfill

Imported 1/4-inch diameter gravel from an off-Site source will be used to backfill the trench after the drain pipe is placed. Gravel will be placed in the trench from the floor of the trench to approximately the top of the bedrock. The gravel backfill along with the collection pipe will form a preferential pathway to direct groundwater to the WW. The installation of geotextile above the gravel backfill will lead to a reduction in infiltration and groundwater recharge in the trench area and, subsequently, lead to less shallow groundwater collection and more effective stormwater management in the detention basins and WW.

6.2.8 Geotextile

A polypropylene geotextile will be installed for filtration control to separate the bedrock trench granular backfill from the drainage media placed above the bedrock surface (Appendix E, Drawing C-07). Typical bias weave materials such as (Mirafi 700X or 70/20, Filterweave 500, or similar) can be used.

6.2.9 Drainage Media Sand

A sand layer, wrapped in a geotextile ('burrito' style) placed directly over the bedrock trench will be utilized to provide a downward path into the trench for water travelling through the overburden regime, or along the bedrock surface, thus preventing water from traversing the trench. The sand will be piled over the trench and allowed to slope at its natural angle of repose, as compaction of sand is not necessary or possible.

6.2.10 Backfill

A minimum one foot of common fill material will be placed over the geotextile layer-wrapped sand layer. Fill material will consist of either the material removed during initial excavation for the working platform or, if that material is deemed unsuitable, clean fill from an approved off-Site source. Fill material will be placed, compacted, and graded to promote surface water drainage away from the Cover System and trench.

A 6-inch topsoil and vegetative cover layer will be included to prevent wind and water erosion, provide storage for vegetation, maximize evapotranspiration, and reduce the volume of infiltrating stormwater that would migrate to the trench

6.2.11 East Plant Area Cover System

Portions of the trench extend through areas previously capped by the East Plant Area Cover System. In these areas, the trench will be backfilled with the aforementioned granular backfill, overlain with the sand drainage material, and fill. However, the components of the East Plant Area Cover System will subsequently be reinstalled in lieu of the common fill and topsoil components listed above to make up the final approximate 30 inches. Design criteria, including materials, compaction requirements, elevations and grades, liner/geocomposite tie-in, and construction quality assurance testing, presented in the East Plant Area Design Report and finalized in the Construction Certification Report East Plant Area Cover System (CRA, March 2, 2015), will be maintained.

6.2.12 Wet Well

Two dual vertical 2-foot diameter HDPE sumps will be installed to accept a single extraction pump each and permit the free flow of groundwater into the pump well from the 6-inch diameter HDPE drain pipe (Appendix E, Drawings C-08 to C-10). For the Pilot Trench, two of the sumps will be outfitted with EPG Companies, Inc. electric submersible pumps (or equivalent) with individual 3-inch diameter discharges connected to a 6-inch diameter header pipe within the WW structure leading to a HDPE force main. Collected water will be transferred to an on-Site water treatment facility prior to discharge to the creek under a NPDES permit.

For design flexibility, the WW chamber will include 2 additional sumps. One sump will be used for a future pump should additional pumping capacity be required following completion of the full Perimeter Groundwater Trench Collection System. The other sump will be installed to facilitate the use of a diesel pump as a backup in the event of a power outage or to provide supplemental pumping capabilities. Design calculations for the sump pump selection are presented in Appendix G.

6.3 Equipment and Approach

The contractor will locate and mark aboveground and underground utilities prior to commencing field activities. Utilities will be periodically relocated during the course of the construction as needed or required by law.

6.3.1 Working Platform

Overburden will be removed by the general contractor along the Pilot Trench alignment to the bedrock surface to provide a level working platform to accommodate the bedrock trencher, spoils and haul roads. The working platform will be fenced to prevent unauthorized access to the Site.

6.3.2 Trench Excavation

Excavation in the Pilot Trench will be performed using a specially-equipped bedrock trenching machine so the trench can be carried to its final depth continuously along the trench alignment. Special chopping, chiseling or other suitable equipment may be used as necessary to satisfactorily accomplish the required excavation. Consequently, the width of the trenching machine will be equal to or greater than the specified minimum width of the Pilot Trench.

The potential trenching machine must have the capability to cut a trench in the bedrock and achieve the 30-foot depth requirement of the Pilot Trench. An example of a rock trenching machine would be the Tesmec 1660 trencher that can be provided by specialty contractor, Rock

Removal Resources. An alternative cutting machine would be to use a hydraulic head attachment similar to that which is manufactured by Antraquip. This AQ attachment would allow for the penetration of bedrock with a uniaxial compressive strength (UCS) rating up to 25,000 psi. Furthermore, this hydraulic head attachment could potentially be combined with either a standard or a long-stick excavator to reach the deeper depths required for the future collection system.

Following consultation with the selected general contractor, potential rock excavation options, if proposed by the general contractor, will be evaluated to determine whether an acceptable production rate and trench quality is achievable using an alternate trenching method, as compared to the rock trenching machine.

The Pilot Trench will be inspected, to the safest extent possible, prior to installation of the remaining components, which will be installed as outlined below.

6.3.3 Soil Handling and Stockpiling

Soil materials removed during the construction of the working platform outside of the Cover System footprint will be handled under the assumption that the materials do not contain PCBs. Fill soil from under the Cover System foot print will be transported off-Site for disposal as ≥50 mg/kg PCBs waste. Soil outside of the Cover System will transported to an on-Site staging area and sampled in accordance with the Sampling and Analysis Plan (SAP) (Appendix H). The staging area will be constructed with an exterior berm to allow for the collection and treatment of water within the staging area. If soils are securely tarped and runoff cannot come in contact with the soil piles, then the water may be diverted as storm water runoff.

Due to the limited working area, rock cuttings from the trenching activities will be temporarily diverted, and put back into the cut trench. Depending on the consistency and water content, de-watering of the rock cuttings in bags or using another method may be necessary before being placed back into the cut trench, or when removed again.

Stockpiled materials that are less than or equal to 1.8 mg/kg PCBs may be re-used anywhere along the trench alignment where the consistency is deemed suitable (rock cuttings not suitable for reuse and will be hauled off-Site for disposal). Materials with >1.8 mg/kg PCBs and <50 mg/kg PCBs may be placed in the footprint of and subsequently covered by the East Plant Area Cover System that was disturbed to install the Pilot Trench.

6.3.4 Physical Barrier Placement

The trench will be excavated to the line, grade, and width shown on the construction drawings in Appendix E.

The physical barrier will be set to the bottom depth of the excavated bedrock trench. Sections of the physical barrier material will be lowered into the trench following the manufacturer's requirements for overlap and/or sealants. Care will be taken when backfilling the trench to prevent damage to the physical barrier.

The physical barrier will likely be comprised of plastic sheeting, a geotextile liner (LLDPE) or a comparative curtain wall. Individual barrier options will be evaluated and left to the contractor to determine installation suitability. The physical barrier will be installed along the downgradient face of the Pilot Trench and may likely require additional protection requirements to facilitate implementation.

The intention is to select a barrier that is flexible and malleable enough to allow for installation within the trench yet be robust and durable enough to withstand installation along the face of the trench and placement of the granular fill. The rock face will likely contain sharp protrusions of bedrock and therefore the selected barrier must not be susceptible to tearing throughout installation procedures.

Final selection of the specific physical barrier type and associated specifications will be submitted to U.S. EPA for approval prior to installation in the Pilot Trench.

6.3.5 Grout Placement

A cement-bentonite grout slurry will be mixed on Site. The slurry mixture will be tremied to the bottom of the trench to "key" in the plastic physical barrier between the bedrock floor and downgradient wall and the grout slurry mixture.

6.3.6 Drain Pipe Placement

Equipment for handling and placing the drain pipe will operate from the surface of the working platform. The line and grade of the pipe will be controlled and measured using survey, laser equipment and/or telltales. The pipe will be centered between the trench walls. Granular drainage media will be placed as bedding for the pipe, above the pipe and will extend to the top of the bedrock surface.

6.3.7 Geotextile Placement

Geotextile (LLDPE) will be placed to maintain separation between granular backfill and overlying soil backfill (to keep the backfilled common fill soil from infiltrating the sand drainage media), while allowing water to pass through the geotextile to the sand drainage media. Equipment for handling and placing geotextile panels may consist of suitable material handling equipment such as loaders or forklifts that are capable of delivering the geotextile panels to the proper position in the trench without damage. The equipment will place the panels with an overlap. The geotextile will be placed, such that the geotextile panel conforms to the shape of the trench without excessive folds, tears, or unnecessary patching.

6.3.8 Backfill Placement

Standard earth moving equipment (i.e. excavators, dozers, loaders) will be used for backfill activities above the bedrock and drainage media sand. Soil backfill (common fill and topsoil) will be placed above the geotextile layer, outside the extents of the Pilot Trench installed within the East Plant Area Cover System footprint, to meet substantially similar pre-construction elevations. In particular, common fill will be compacted to 6 inches below the existing surface elevation and then covered with 6 inches of topsoil. To the extent possible, soils removed when constructing the working platform will be re-used as common fill.

6.4 Execution of the Work

The groundwater collection system in the Pilot Trench will be constructed to the elevations, lines and grades, and cross sections shown on the plans (Appendix E). The Pilot Trench will have essentially vertical walls, a minimum width of 24 inches, and extend to the design depth.

6.4.1 Site Preparation

Prior to initiating trenching activities, a working platform will be prepared to provide a level working surface for the operation of the trenching equipment, and to provide an area for trench spoils to be discharged and managed. This platform will be prepared by excavating existing overburden soils to the bedrock surface, and adding a gravel working surface, if necessary, to provide a suitable platform. Temporary berms will be constructed to divert clean surface water around the Pilot Trench area. Clean surface water that is diverted around the working surface and has met the requirements for surface water drainage for construction sites, may be discharged to the creek system in accordance with the applicable permits. In some cases, diversion of clean surface water may require piping as the trench will temporarily eliminate a portion of the East Plant Area Cover System detention basin and stormwater discharge system. As-built drawings for the detention basin and stormwater discharge system can be found in the Construction Certification Report East Plant Area Cover System.

Water which collects within the bermed area (including the working platform), will be collected, handled, and treated as impacted water.

A portion of the trench will be constructed through a portion of the East Plant Area Cover System. It is assumed that the underlying soil in this area contains low level PCB impacted soil below the Cover System components. During construction of the working platform, soils from under the cover will be segregated and managed as impacted soils. Soils from the Cover System will be segregated and reused to repair the Cover System after completion of the trench, to the extent possible. Further, the general contractor will take care when approaching the geocomposite and LLDPE layers which are part of the East Plant Area Cover System. The general contractor will be required to cleanly cut through these layers so that that the remaining liner edges can be unearthed following completion of the trench and the Cover System can be re-established as part of the final backfill activities.

6.4.2 Excavation

The Pilot Trench excavation will be maintained in a safe, open condition and be constructed without undue interruption until complete. Open excavations will be safely protected using construction fencing, site security, lighting, warning signs, etc. to prevent unintended access. Excavation will be conducted in a manner that provides for a continuous minimum width trench to the required depth along the centerline of the excavation. The trench may be deepened based on examination of the trench.

6.4.3 Trench Completion

Upon completion of inspections, the plastic physical barrier liner will be placed to the trench bottom and along the trench wall. Grouting will be completed in the bottom of the completed excavation to seal the bottom of the trench and "key" in the plastic physical barrier.

The pipe and media drain will then be placed above the grout after allowing adequate time for the grout to set (1 to 2 days depending on weather conditions). The drainage media will be placed up to the top of bedrock elevation.

Geotextile will be placed to separate drainage media from the backfill soil placed above the top of bedrock. Backfill material within the overburden regime above the bedrock trench drainage media will consist of native backfill material previously removed during construction of the working platform. Where the trench is within the limits of the East Plant Cover System, a sand drainage media will be placed directly above the geotextile, followed by native material. This

area of the Pilot Trench will be restored consistent with the East Plant Area Cover System design.

Groundwater collected during trench construction will be collected, handled, and treated as impacted water.

6.4.4 Tolerances

The following tolerances are typical and generally apply to the Pilot Trench dimensions and construction. The final construction may vary within these tolerances from the designed values.

- The Pilot Trench walls will be essentially vertical. The working platform and/or excavating equipment may be leveled to be plumb within 1 percent of vertical.
- The depth of the Pilot Trench will be measured or surveyed to within 6 inches of the desired elevation. The trencher will operate using a laser level to maintain proper depth and grade control.
- The bedrock trenching excavator will be at least as wide as the design width of the Pilot Trench.
- The Pilot Trench will follow the designed alignment within 2 ft of the designated centerline.
- Overlaps of the geotextile fabric sheets will be at least 4 ft, as measured at the top of the trench.
- The WW will be installed to within 3 ft of the designated location.
- The perforated drain pipe will be installed in accordance with the manufacturer's recommendations. The elevation of the installed drain pipe will be within \pm 6 inches of the plan elevation without kinks or bends and the elevation of the pipe and recorded at 20 ft intervals. The grade of the pipe will be continuously maintained without mounds or sags in the line of the pipe.

Should Site conditions require deviation from these criteria, these deviations will be relayed to U.S. EPA for approval prior to implementation.

Section 7.0 Construction Support And Coordination With Other East Plant Area Activities

7.1 Supporting Facilities

Construction of the Pilot Trench will be coordinated with ongoing activities to minimize impacts to ongoing Site activities. The Pilot Trench construction will utilize the following supporting facilities:

7.1.1 Site Security

A temporary fence will be placed around the active work areas. The contractor will be responsible for maintaining security at all times during the construction period. The contractor will inspect, maintain, and repair the fencing, as necessary, to ensure protection of the public and security of the trenching work area. A cover will be placed over the open areas of bedrock trench when work is not ongoing as an additional precaution.

7.1.2 Site Offices

Existing Site offices will be utilized by the consultant to support the Pilot Trench construction. Additional Site offices may be established for the general contractor and the trenching contractor.

7.1.3 Emergency First Aid Facilities

First aid facilities will be established and maintained the major work area. The first aid supplies will comply with the requirements of 29 CFR 1910.141 and follow the Facility Health and Safety Plan.

7.1.4 Fire Fighting Equipment

The general contractor will provide the necessary fire suppression equipment to ensure the safety of Site personnel and protection of GM's property. Coordination will be established with the Facility, local Fire Department, and emergency responders during trench construction activities.

7.1.5 Decontamination Facilities

Prior to commencing work in an Exclusion Zone at the Site, the contractor will establish a personnel hygiene/decontamination facility. The contractor will also maintain an equipment decontamination pad(s) outside the exclusion zone in the construction area, as required.

Wastewater from the decontamination operations will be pumped to designated storage tanks prior to on-Site treatment, or pumped directly to on-Site treatment.

7.1.6 Portable Sanitary Facilities

Portable toilet facilities will be provided as needed and maintained in an area outside the Exclusion Zone. Sanitary wastes will be removed and disposed of off Site, on a periodic basis.

7.1.7 Utilities

Electrical power, potable water, telephone service, and other utilities, as required, will be established for the construction support facilities.

7.1.8 Site Communications

Two-way radios will be utilized by the contractor and provided to the Engineer. Suitable warning signals such as horns or whistles shall be designated for emergencies and identified in the contractor's HASP.

7.1.9 Access Roads

On-Site access roads will be utilized for Site access. Temporary access roads, where required, will be removed by the Contractor at the completion of the work.

7.1.10 Parking

Sufficient space for parking for Site personnel will be established. In the event an established parking area becomes encumbered by specific Site-related operations, temporary alternate space will be provided.

7.3 Fugitive Particulate Control

During Pilot Trench construction activities, real-time particulate air monitoring will be performed by the contractor(s) for their employees. The contractor will adjust work practices based on the monitoring data. The particulate control measures will be designed to limit the emissions of total suspended particulates (TSPs) that are likely to remain airborne and be carried out of the work area.

During construction of the Pilot Trench, the contractor will be responsible for the control of fugitive particulates generated by the excavation, trenching, transporting and backfilling of the

soil and rock. In the event that dust control is not sufficient, work will be stopped and changes to the operation made prior to resuming work.

Ambient air quality monitoring will be conducted by CRA around the work platform and the staging areas to monitor potential exposure of off-Site receivers in accordance with the Ambient Air Quality Monitoring Program (AAQMP) in Appendix I. Monitoring will initially be completed daily for total suspended particulates (TSPs) and PCBs during the preparation of the work platform and the trenching activities. PCB monitoring will be reduced on the schedule indicated in the AAQMP (Appendix I), pending PCB results consistently less than the action level (1 μ g/m³). U.S. EPA will be notified of any operational problems, or of detected concentrations of airborne contaminants in excess of the ambient air criteria.

7.4 Sediment and Erosion Control

Sediment and erosion controls will be installed and may include swales, berms, plastic sheeting (tarps), straw bales, and silt fences, as necessary. The requirements will be evaluated based on Site conditions and the extent of work being performed.

7.5 Institutional Controls

Following the Pilot Trench construction, the timing for permanent institutional controls and deed restrictions to restrict access, land use, and development will be evaluated as part of the overall East Plant Area remedy.

7.6 Operation, Maintenance, and Monitoring

The Pilot Trench Interim Groundwater Monitoring Program and Operation Schedule will be submitted to U.S.EPA within 60 days of construction completion of the Pilot Trench. The document will outline the operation of the trench, procedures for collection of operational data, and a monitoring schedule for determining effectiveness of the system and its impact to the area groundwater.

7.7 Permit Applications and Approvals

A soil erosion and sediment control permit will be required for the Pilot Trench installation at the East Plant Area.

Section 8.0 Community Relations

Community relations activities and community participation in the review of the East Plant Area collection trench includes:

- Project fact sheets specific to the East Plant Area Work Plan activities, including the Perimeter Groundwater Trench Collection System design and construction
- Project website
- GM-organized community meetings for neighbors and the general public
- Community Liaison Panel (CLP) meetings.

Section 9.0 Schedule

A project schedule is presented on Figure 9.1. The schedule presents project tasks in a sequence that will expeditiously implement the trench activities once U.S.EPA approval of the design has been approved.

Section 10.0 Cost Estimate

The cost estimate for the Pilot Trench installation was provided to U.S.EPA during the AOC negotiations. The cost estimate is broken down as follows:

Task	Estimated Cost
Mobilization	\$259,000
Site Preparation	\$827,000
Rock Trenching	\$538,000
Plastic Barrier System	\$250,000
Collection System Installation	\$482,000
Bedrock Backfilling	\$55,000
System Startup	(included)
Restoration	\$89,000
Demobilization	(included)
Operation and Monitoring	(not included)
Engineering Oversight (fulltime)	\$100,000
Total	\$2,600,000

Section 11.0 References

- Conestoga-Rovers & Associates, Inc., Consolidated Health and Safety Plan (HASP), June 24, 2008.
- Conestoga-Rovers & Associates, Inc., Quality Assurance Project Plan (QAPP) Rev. 1.0, August 13, 2003.
- Conestoga-Rovers & Associates, Inc., Quality Assurance Project Plan (QAPP) Addendum No. 1 (Rev. 1.1), December 21, 2004.
- Conestoga-Rovers & Associates, Inc., Quality Assurance Project Plan (QAPP) Addendum No. 2, July 25, 2006.
- Conestoga-Rovers & Associates, Inc., Technical Memorandum, RCRA Facility Investigation (RFI), Soil; Sediment; Surface Water; Wipe Sampling (Soil TM), April 14, 2004.
- Conestoga-Rovers & Associates, Inc., RCRA Facility Investigation Work Plan (RFI Work Plan), October 29, 2001.
- Conestoga-Rovers & Associates, Inc., Construction Certification Report East Plant Area Cover System, March 2, 2015.
- Etzel, J.E., 1982, Geological History of Bedford Plant Site Area, unpublished report provided to General Motors.
- Fenelon, J.M., K.E. Bobay, et. al, 1994, Hydrogeologic Atlas of Aquifers in Indiana, U.S. Geological Survey, Water Resources Investigations Report 92-4142.
- Gray, H.H., 1974, Glacial Lake Sediments in Salt Creek Valley near Bedford, Indiana, Department of Natural Resources, Geological Survey Occasional Paper 1,
- Indiana Geological Survey, 2001, website (http://www.adamite.igs.indiana.edu/index.htm, 2001).
- Melhorn, W.N., and N.M. Smith, 1959, The Mt. Carmel Fault and Related Structural Features in South-Central Indiana, Indiana Department of Conservation, Geological Survey, Report of Progress No. 16.
- Powell, R.L., 2001, Personal Communication.
- Powell, R.L., 1976, Some Geomorphic and Hydrologic Implications of Jointing in Carbonate Strata of Mississippian Age in South-Central Indiana, Ph.D. thesis, Purdue University.
- Sharma PV., 1997, *Environmental and engineering geophysics*. Cambridge University Press. Cambridge, UK. p. 112-185; 207-260; 309-327.
- U.S. Department of Agriculture, 1985, Soil Survey of Lawrence County, Indiana, Soil Conservation Service.

Area Sample Location: Sample Identification: Sample Date: Sample Depth: Sample Type:	Units	P215EastPlantArea 215-M1 S-215-062205-DD-885 6/22/2005 (0-2) ft	P215EastPlantArea 215-M1 S-215-062205-DD-886 6/22/2005 (2-4) ft	P215EastPlantArea 215-M2 S-215-062205-DD-887 6/22/2005 (0-2) ft	P215EastPlantArea 215-M2 S-215-062205-DD-888 6/22/2005 (2-3.4) ft	EastPlantArea_A004 AD-10 S-060805-JL-1287 6/8/2005 (0-2) ft	EastPlantArea_A004 AD-10 S-060805-JL-1288 6/8/2005 (5-7) ft	EastPlantArea_P216West AD-11 S-061405-DD-854 6/14/2005 (0-2) ft	EastPlantArea_P216West AD-11 S-061405-DD-855 6/14/2005 (0-2) ft Duplicate	EastPlantArea_P216West AD-11 S-061405-DD-856 6/14/2005 (2-4) ft
PCBs	Onics									
Aroclor-1016 (PCB-1016)	mg/kg	0.044 U	18 U	0.044 U	18 U	2.1 U	4.4 U	9.3 U	4.3 U	0.043 U
Aroclor-1221 (PCB-1221)	mg/kg	0.044 U	18 U	0.044 U	18 U	2.1 U	4.4 U	9.3 U	4.3 U	0.043 U
Aroclor-1232 (PCB-1232)	mg/kg	0.044 U	18 U	0.044 U	18 U	2.1 U	4.4 U	9.3 U	4.3 U	0.043 U
Aroclor-1242 (PCB-1242)	mg/kg	0.044 U	280 J	0.044 U	200 J	2.1 U	31	9.3 U	4.3 U	0.25
Aroclor-1248 (PCB-1248)	mg/kg	0.33 J	18 U	0.22 J	18 U	37	4.4 U	110	73	0.043 U
Aroclor-1254 (PCB-1254)	mg/kg	0.044 U	18 U	0.044 U	18 U	2.1 U	4.4 U	9.3 U	4.3 U	0.043 U
Aroclor-1260 (PCB-1260)	mg/kg	0.044 U	4.5 J	0.044 U	18 U	3.8	2.4 J	11	6.8	0.013 J
Total PCBs	mg/kg	0.33 J	284.5 J	0.22 J	200 J	40.8	33.4 J	121	79.8	0.263 J
Metals										
Aluminum	mg/kg									
Antimony	mg/kg									
Arsenic	mg/kg									
Barium	mg/kg									
Beryllium	mg/kg									
Cadmium	mg/kg									
Chromium	mg/kg									
Cobalt	mg/kg									
Copper	mg/kg									
Iron	mg/kg									
Lead	mg/kg									
Manganese	mg/kg									
Mercury	mg/kg									
Nickel	mg/kg									
Selenium	mg/kg									
Silver	mg/kg									
Thallium	mg/kg									
Vanadium	mg/kg									
Zinc	mg/kg									
Semi-Volatile Organic Compounds (SVOCs)										
2,2'-Oxybis(1-chloropropane) (bis(2-Chloroisopropyl) ether)	mg/kg									
2,4,5-Trichlorophenol	mg/kg									
2,4,6-Trichlorophenol	mg/kg									
2,4-Dichlorophenol	mg/kg									
2,4-Dimethylphenol	mg/kg									
2,4-Dinitrophenol	mg/kg									
2,4-Dinitrotoluene	mg/kg									
2,6-Dinitrotoluene	mg/kg									
2-Chloronaphthalene	mg/kg									
2-Chlorophenol 2-Methylnaphthalene	mg/kg mg/kg	 		 		 			 	
2-Methylphenol	mg/kg								 	
2-Nitroaniline	mg/kg		 				 	 	 	
2-Nitrophenol	mg/kg									
3,3'-Dichlorobenzidine	mg/kg									
3-Nitroaniline	mg/kg									
4,6-Dinitro-2-methylphenol	mg/kg									

Sample Location:		215-M1	215-M1	215-M2	215-M2	AD-10	AD-10	AD-11	AD-11	AD-11
Sample Identification:		S-215-062205-DD-885	S-215-062205-DD-886	S-215-062205-DD-887	S-215-062205-DD-888	S-060805-JL-1287	S-060805-JL-1288	S-061405-DD-854	S-061405-DD-855	S-061405-DD-856
Sample Date:		6/22/2005	6/22/2005	6/22/2005	6/22/2005	6/8/2005	6/8/2005	6/14/2005	6/14/2005	6/14/2005
Sample Depth:		(0-2) ft	(2-4) ft	(0-2) ft	(2-3.4) ft	(0-2) ft	(5-7) ft	(0-2) ft	(0-2) ft	(2-4) ft
Sample Type:									Duplicate	
	Units								•	
4-Bromophenyl phenyl ether										
	mg/kg									
4-Chloro-3-methylphenol	mg/kg									
4-Chloroaniline	mg/kg									
4-Chlorophenyl phenyl ether	mg/kg									
4-Methylphenol	mg/kg									
4-Nitroaniline	mg/kg									
4-Nitrophenol	mg/kg									
Acenaphthene	mg/kg									
Acenaphthylene	mg/kg									
Acetophenone	mg/kg									
Anthracene	mg/kg									
Atrazine	mg/kg									
Benzaldehyde	mg/kg									
Benzo(a)anthracene	mg/kg		 		 	 				
								- -		
Benzo(a)pyrene	mg/kg									
Benzo(b)fluoranthene	mg/kg									
Benzo(g,h,i)perylene	mg/kg									
Benzo(k)fluoranthene	mg/kg									
Biphenyl (1,1-Biphenyl)	mg/kg									
bis(2-Chloroethoxy)methane	mg/kg									
bis(2-Chloroethyl)ether	mg/kg									
bis(2-Ethylhexyl)phthalate (DEHP)	mg/kg									
Butyl benzylphthalate (BBP)	mg/kg									
Caprolactam	mg/kg									
Carbazole	mg/kg									
Chrysene	mg/kg		<u></u>							
Dibenz(a,h)anthracene	mg/kg									
										
Dibenzofuran	mg/kg									
Diethyl phthalate	mg/kg									
Dimethyl phthalate	mg/kg									
Di-n-butylphthalate (DBP)	mg/kg									
Di-n-octyl phthalate (DnOP)	mg/kg									
Fluoranthene	mg/kg									
Fluorene	mg/kg									
Hexachlorobenzene	mg/kg									
Hexachlorobutadiene	mg/kg									
Hexachlorocyclopentadiene	mg/kg									
Hexachloroethane	mg/kg									
Indeno(1,2,3-cd)pyrene	mg/kg		<u></u>							
Isophorone	mg/kg									
Naphthalene										
	mg/kg									
Nitrobenzene	mg/kg									
N-Nitrosodi-n-propylamine	mg/kg									
N-Nitrosodiphenylamine	mg/kg									
Pentachlorophenol	mg/kg									
Phenanthrene	mg/kg									
Phenol	mg/kg									
Pyrene	mg/kg									
Volatile Organic Compounds (VOCs)										
1,1,1-Trichloroethane	mg/kg									
1,1,2,2-Tetrachloroethane	mg/kg									
1,1,2-Trichloroethane	mg/kg									
1,1-Dichloroethane	mg/kg									
1,1-Dichloroethene	mg/kg									
1,2,4-Trichlorobenzene	mg/kg									

Sample Location: Sample Identification: Sample Date: Sample Depth: Sample Type:	٤	215-M1 S-215-062205-DD-885 6/22/2005 (0-2) ft	215-M1 S-215-062205-DD-886 6/22/2005 (2-4) ft	215-M2 S-215-062205-DD-887 6/22/2005 (0-2) ft	215-M2 S-215-062205-DD-888 6/22/2005 (2-3.4) ft	AD-10 S-060805-JL-1287 6/8/2005 (0-2) ft	AD-10 S-060805-JL-1288 6/8/2005 (5-7) ft	AD-11 S-061405-DD-854 6/14/2005 (0-2) ft	AD-11 S-061405-DD-855 6/14/2005 (0-2) ft Duplicate	AD-11 S-061405-DD-856 6/14/2005 (2-4) ft
	Units									
1,2-Dibromo-3-chloropropane (DBCP)	mg/kg									
1,2-Dibromoethane (Ethylene dibromide)	mg/kg									
1,2-Dichlorobenzene	mg/kg									
1,2-Dichloroethane	mg/kg									
1,2-Dichloropropane	mg/kg									
1,3-Dichlorobenzene	mg/kg									
1,4-Dichlorobenzene	mg/kg									
2-Butanone (Methyl ethyl ketone) (MEK)	mg/kg									
2-Hexanone	mg/kg									
4-Methyl-2-pentanone (Methyl isobutyl ketone) (MIBK)	mg/kg									
Acetone	mg/kg									
Benzene	mg/kg									
Bromodichloromethane	mg/kg									
Bromoform	mg/kg									
Bromomethane (Methyl bromide)	mg/kg									
Carbon disulfide	mg/kg									
Carbon tetrachloride	mg/kg									
Chlorobenzene	mg/kg									
Chloroethane	mg/kg									
Chloroform (Trichloromethane)	mg/kg									
Chloromethane (Methyl chloride)	mg/kg									
cis-1,2-Dichloroethene	mg/kg									
cis-1,3-Dichloropropene	mg/kg									
Cyclohexane	mg/kg									
Dibromochloromethane	mg/kg									
Dichlorodifluoromethane (CFC-12)	mg/kg									
Ethylbenzene	mg/kg									
Isopropyl benzene	mg/kg									
Methyl gyalah ayana	mg/kg									
Methyl cyclohexane Methyl tert butyl ether (MTBE)	mg/kg	 								
Methylene chloride	mg/kg	 								
Styrene	mg/kg mg/kg	 								
Tetrachloroethene	mg/kg		 			 			 	
Toluene	mg/kg									
trans-1,2-Dichloroethene	mg/kg									
trans-1,3-Dichloropropene	mg/kg									
Trichloroethene	mg/kg									
Trichlorofluoromethane (CFC-11)	mg/kg									
Trifluorotrichloroethane (Freon 113)	mg/kg									
Vinyl chloride	mg/kg									
Xylenes (total)	mg/kg									
General Chemistry	-									
Cyanide (amenable)	mg/kg									
Cyanide (total)	mg/kg									
Total organic carbon (TOC)	mg/kg									
Total solids	%	74.7	73.7	75.5	75.2	80.5	75.8	71.2	76.2	76.3

Notes

U - Not detected at the associated reporting limit.

J - Estimated concentration.

UJ - Not detected; associated reporting limit is estimated.

Area Sample Location: Sample Identification: Sample Date: Sample Depth: Sample Type:	<i>Hata</i>	EastPlantArea_P216West AD-12 S-061405-DD-857 6/14/2005 (0-2) ft	EastPlantArea_P216West AD-12 S-061405-DD-858 6/14/2005 (2-4) ft	EastPlantArea_A004 AD-13 S-061405-DD-859 6/14/2005 (0-2) ft	EastPlantArea_A004 AD-13 S-061405-DD-860 6/14/2005 (3.5-5.5) ft	EastPlantArea_A004 AD-14 S-061405-DD-861 6/14/2005 (0-2) ft	EastPlantArea_A004 AD-14 S-061405-DD-862 6/14/2005 (5-7) ft	EastPlantArea_A004 AD-14 S-061405-DD-863 6/14/2005 (10-12) ft	EastPlantArea_A004 AD-14 S-061405-DD-864 6/14/2005 (15-17) ft	EastPlantArea_A004 AD-15 S-061405-DD-865 6/14/2005 (0-2) ft	EastPlantArea_A004 AD-15 S-061405-DD-866 6/14/2005 (3-5) ft
PCBs	Units										
Aroclor-1016 (PCB-1016)	mg/kg	0.42 U	0.041 U	2 U	16 U	0.045 U	20 U	21 U	4.2 U	0.042 U	4.1 U
Aroclor-1221 (PCB-1221)	mg/kg	0.42 U	0.041 U	2 U	16 U	0.045 U	20 U	21 U	4.2 U	0.042 U	4.1 U
Aroclor-1232 (PCB-1232)	mg/kg	0.42 U	0.041 U	2 U	16 U	0.045 U	20 U	21 U	4.2 U	0.042 U	4.1 U
Aroclor-1242 (PCB-1242)	mg/kg	0.42 U	0.04 J	2 U	16 U	0.045 U	190	120	50	0.051	54
Aroclor-1248 (PCB-1248)	mg/kg	3.8	0.041 U	33	250	0.13	20 U	21 U	4.2 U	0.042 U	4.1 U
Aroclor-1254 (PCB-1254)	mg/kg	0.42 U	0.041 U	2 U	16 U	0.045 U	20 U	21 U	4.2 U	0.042 U	4.1 U
Aroclor-1260 (PCB-1260)	mg/kg	0.42 U	0.041 U	3.4	16	0.028 J	4.8 J	21 U	1.3 J	0.042 U	5.5
Total PCBs	mg/kg	3.8	0.04 J	36.4	266	0.158 J	194.8 J	120	51.3 J	0.051	59.5
Metals											
Aluminum	mg/kg										
Antimony	mg/kg										
Arsenic	mg/kg										
Barium	mg/kg										
Beryllium	mg/kg										
Cadmium	mg/kg										
Chromium	mg/kg										
Cobalt	mg/kg										
Copper	mg/kg										
Iron	mg/kg										
Lead	mg/kg										
Manganese	mg/kg										
Mercury	mg/kg										
Nickel	mg/kg										
Selenium	mg/kg										
Silver	mg/kg										
Thallium	mg/kg										
Vanadium	mg/kg										
Zinc	mg/kg										
Semi-Volatile Organic Compounds (SVOCs)											
2,2'-Oxybis(1-chloropropane) (bis(2-Chloroisopropyl) ether)	mg/kg										
2,4,5-Trichlorophenol	mg/kg										
2,4,6-Trichlorophenol	mg/kg										
2,4-Dichlorophenol	mg/kg										
2,4-Dimethylphenol	mg/kg										
2,4-Dinitrophenol	mg/kg										
2,4-Dinitrotoluene	mg/kg										
2,6-Dinitrotoluene	mg/kg										
2-Chloronaphthalene	mg/kg										
2-Chlorophenol 2-Methylnaphthalene	mg/kg mg/kg										
2-Methylphenol	mg/kg		 					 			
2-Nitroaniline	mg/kg		 						 	 	
2-Nitrophenol	mg/kg										
3,3'-Dichlorobenzidine	mg/kg										
3-Nitroaniline	mg/kg										
4,6-Dinitro-2-methylphenol	mg/kg										

Sample Location:	AD-12 S-061405-DD-857	AD-12 S-061405-DD-858	AD-13 S-061405-DD-859	AD-13 S-061405-DD-860	AD-14 S-061405-DD-861	AD-14 S-061405-DD-862	AD-14 S-061405-DD-863	AD-14 S-061405-DD-864	AD-15 S-061405-DD-865	AD-15 S-061405-DD-866
Sample Identification:										
Sample Date:	6/14/2005	6/14/2005	6/14/2005	6/14/2005	6/14/2005	6/14/2005	6/14/2005	6/14/2005	6/14/2005	6/14/2005
Sample Depth:	(0-2) ft	(2-4) ft	(0-2) ft	(3.5-5.5) ft	(0-2) ft	(5-7) ft	(10-12) ft	(15-17) ft	(0-2) ft	(3-5) ft
Sample Type:										
Units										
4-Bromophenyl phenyl ether mg/kg										
4-Chloro-3-methylphenol mg/kg										
4-Chloroaniline mg/kg										
4-Chlorophenyl phenyl ether mg/kg		==								
4-Methylphenol mg/kg 4-Nitroaniline mg/kg										
9. 9		 				 	 			
		 				 	 			
Acenaphthene mg/kg Acenaphthylene mg/kg		 		 	 	 	 	 		
Acetophenone mg/kg		 		 	 	 	 		 	
Anthracene mg/kg										
Atrazine mg/kg										
Benzaldehyde mg/kg										
Benzo(a)anthracene mg/kg										
Benzo(a)pyrene mg/kg										
Benzo(b)fluoranthene mg/kg										
Benzo(g,h,i)perylene mg/kg										
Benzo(k)fluoranthene mg/kg										
Biphenyl (1,1-Biphenyl) mg/kg										
bis(2-Chloroethoxy)methane mg/kg										
bis(2-Chloroethyl)ether mg/kg										
bis(2-Ethylhexyl)phthalate (DEHP) mg/kg										
Butyl benzylphthalate (BBP) mg/kg										
Caprolactam mg/kg										
Carbazole mg/kg										
Chrysene mg/kg										
Dibenz(a,h)anthracene mg/kg										
Dibenzofuran mg/kg										
Diethyl phthalate mg/kg										
Dimethyl phthalate mg/kg										
Di-n-butylphthalate (DBP) mg/kg										
Di-n-octyl phthalate (DnOP) mg/kg Fluoranthene mg/kg										
Fluoranthene mg/kg Fluorene mg/kg										
Hexachlorobenzene mg/kg		 	 		 	 	 	 	 	
Hexachlorobutadiene mg/kg										
Hexachlorocyclopentadiene mg/kg				 				 		
Hexachloroethane mg/kg										
Indeno(1,2,3-cd)pyrene mg/kg										
Isophorone mg/kg										
Naphthalene mg/kg										
Nitrobenzene mg/kg										
N-Nitrosodi-n-propylamine mg/kg										
N-Nitrosodiphenylamine mg/kg										
Pentachlorophenol mg/kg										
Phenanthrene mg/kg										
Phenol mg/kg										
Pyrene mg/kg										
Volatile Organic Compounds (VOCs)										
1,1,1-Trichloroethane mg/kg										
1,1,2,2-Tetrachloroethane mg/kg										
1,1,2-Trichloroethane mg/kg										
1,1-Dichloroethane mg/kg										
1,1-Dichloroethene mg/kg										
1,2,4-Trichlorobenzene mg/kg										
3, 3										

Sample Identification: S-061405-DD-857 S-061405-DD-858 S-061405-DD-859 S-061405-DD-860 S-061405-DD-861 S-061405-DD-862 S-061405-DD-863 S-061405-DD-864 S-06 Sample Date: 6/14/2005 6/14/2005 6/14/2005 6/14/2005 6/14/2005 6/14/2005 6/14/2005	5/14/2005 6/14/2005
Sample Depth: (0-2) ft (2-4) ft (0-2) ft (3.5-5.5) ft (0-2) ft (5-7) ft (10-12) ft (15-17) ft	(0-2) ft (3-5) ft
	(0-2/)(
Sample Type:	
Units	
1,2-Dibromo-3-chloropropane (DBCP) mg/kg	
1,2-Dibromoethane (Ethylene dibromide) mg/kg	
1,2-Dichloroethane mg/kg	
1,3-Dichlorobenzene mg/kg	
1,4-Dichlorobenzene mg/kg	
2-Butanone (Methyl ethyl ketone) (MEK) mg/kg	
2-Hexanone mg/kg	
4-Methyl-2-pentanone (Methyl isobutyl ketone) (MIBK) mg/kg	
Acetone mg/kg	
Benzene mg/kg	
Bromodichloromethane mg/kg	
Bromoform mg/kg	
Bromomethane (Methyl bromide) mg/kg	
Carbon disulfide mg/kg	
Carbon tetrachloride mg/kg	
Chlorobenzene mg/kg	
Chloroethane mg/kg	
Chloroform (Trichloromethane) mg/kg	<u></u>
Chloromethane (Methyl chloride) mg/kg	
cis-1,2-Dichloroethene mg/kg	
cis-1,3-Dichloropropene mg/kg	
Cyclohexane mg/kg	
Dibromochloromethane mg/kg	
Dichlorodifluoromethane (CFC-12) mg/kg	
Ethylbenzene mg/kg	
Isopropyl benzene mg/kg	
Methyl acetate mg/kg	
Methyl cyclohexane mg/kg	
Methyl tert butyl ether (MTBE) mg/kg	
Methylene chloride mg/kg	
Styrene	
Tetrachloroethene mg/kg	
Toluene mg/kg	
trans-1,2-Dichloroethene mg/kg	
trans-1,3-Dichloropropene mg/kg	
Trichloroethene	
Trichlorofluoromethane (CFC-11) mg/kg	
Trifluorotrichloroethane (Freon 113) mg/kg	
Vinyl chloride mg/kg	
Xylenes (total) mg/kg	
General Chemistry	
Cyanide (amenable)	
Cyanide (total)	
Total organic carbon (TOC) mg/kg	
Total solids % 79.2 80.0 82.1 80.6 73.2 83.2 79.0 79.3	79.5 81.2

Notes:

U - Not detected at the associated reporting limit.

J - Estimated concentration.

UJ - Not detected; associated reporting limit is estimated.

Area Sample Location: Sample Identification: Sample Date: Sample Depth: Sample Type:	Units	EastPlantArea_A004 AD-16 S-061405-DD-867 6/14/2005 (0-2) ft	EastPlantArea_A004 AD-16 S-061405-DD-868 6/14/2005 (0-2) ft Duplicate	EastPlantArea_A004 AD-16 S-061405-DD-869 6/14/2005 (3.5-5.5) ft	EastPlantArea_P216West AD-18 S-062105-DD-881 6/21/2005 (0-2) ft	EastPlantArea_P216West AD-18 S-062105-DD-882 6/21/2005 (4-6) ft	EastPlantArea AD-19 S-062105-DD-879 6/21/2005 (0-2) ft	EastPlantArea AD-19 S-062105-DD-880 6/21/2005 (2-4) ft	EastPlantArea AD-20 S-062105-DD-877 6/21/2005 (0-2) ft	EastPlantArea AD-20 S-062105-DD-878 6/21/2005 (0-2) ft Duplicate	Background_P216West BK-X281Y296 S-010223-MO-001 1/23/2002 (0-2) ft
PCBs											
Aroclor-1016 (PCB-1016)	mg/kg	0.041 U	0.041 U	4 U	0.043 U	0.041 U	0.042 U	0.042 U	2 U	2 U	0.042 U
Aroclor-1221 (PCB-1221)	mg/kg	0.041 U	0.041 U	4 U	0.043 U	0.041 U	0.042 U	0.042 U	2 U	2 U	0.042 U
Aroclor-1232 (PCB-1232)	mg/kg	0.041 U	0.041 U	4 U	0.043 U	0.041 U	0.042 U	0.042 U	2 U	2 U	0.042 U
Aroclor-1242 (PCB-1242)	mg/kg	0.7	0.034 J	4 U	0.043 U	0.041 U	0.042 U	0.042 U	2 U	2 U	0.042 U
Aroclor-1248 (PCB-1248)	mg/kg	0.041 U	0.041 U	39	0.043 U	0.041 U	0.042 U	0.042 U	2 U	2 U	0.042 U
Aroclor-1254 (PCB-1254)	mg/kg	0.041 U	0.041 U	4 U	0.081 J	0.041 U	0.055 J	0.042 U	12	6.3	0.042 U
Aroclor-1260 (PCB-1260)	mg/kg	0.041 U	0.041 U	3.2 J	0.043 U	0.041 U	0.042 U	0.042 U	2 U	2 U	0.042 U
Total PCBs	mg/kg	0.7	0.034 J	42.2 J	0.081 J	ND	0.055 J	ND	12	6.3	ND
1000.1 000	6/6	···	0.00.1	,	0.0017		0.000	5		0.0	2
Metals											
Aluminum	mg/kg										11400
Antimony	mg/kg										7.7 UJ
Arsenic	mg/kg										10.4
Barium	mg/kg										64.0
Beryllium	mg/kg										0.33 J
Cadmium	mg/kg										0.11 J
Chromium	mg/kg										18.0
Cobalt	mg/kg										10.2
Copper	mg/kg										14.0
Iron	mg/kg										20200
Lead	mg/kg										17.6
Manganese	mg/kg										556 J
Mercury	mg/kg										0.13 U
Nickel	mg/kg										11.7
Selenium	mg/kg										0.64 U
Silver	mg/kg										1.3 U
Thallium	mg/kg										1.3 U
Vanadium	mg/kg										34.8
Zinc	mg/kg										40.7 J
Semi-Volatile Organic Compounds (SVOCs)	5. 5										
2,2'-Oxybis(1-chloropropane) (bis(2-Chloroisopropyl) ether)	mg/kg										0.42 U
2,4,5-Trichlorophenol	mg/kg										0.42 U
2,4,6-Trichlorophenol	mg/kg										0.42 U
2,4-Dichlorophenol	mg/kg										0.42 U
2,4-Dimethylphenol	mg/kg										0.42 U
2,4-Dinitrophenol	mg/kg										2.1 U
2,4-Dinitrotoluene 2,6-Dinitrotoluene	mg/kg										0.42 U 0.42 U
2,6-Dinitrotoluene 2-Chloronaphthalene	mg/kg	 				 					0.42 U
2-Chlorophenol	mg/kg mg/kg				 	 				 	0.42 U
2-Methylnaphthalene	mg/kg				 						0.42 U
2-Methylphenol	mg/kg										0.42 U
2-Nitroaniline	mg/kg										2.1 U
2-Nitrophenol	mg/kg										0.42 U
3,3'-Dichlorobenzidine	mg/kg										2.1 U
3-Nitroaniline	mg/kg										2.1 U
4,6-Dinitro-2-methylphenol	mg/kg										2.1 U

Sample Location: Sample Identification: Sample Date: Sample Depth:		AD-16 S-061405-DD-867 6/14/2005 (0-2) ft	AD-16 S-061405-DD-868 6/14/2005 (0-2) ft	AD-16 S-061405-DD-869 6/14/2005 (3.5-5.5) ft	AD-18 S-062105-DD-881 6/21/2005 (0-2) ft	AD-18 S-062105-DD-882 6/21/2005 (4-6) ft	AD-19 S-062105-DD-879 6/21/2005 (0-2) ft	AD-19 S-062105-DD-880 6/21/2005 (2-4) ft	AD-20 S-062105-DD-877 6/21/2005 (0-2) ft	AD-20 S-062105-DD-878 6/21/2005 (0-2) ft	BK-X281Y296 S-010223-MO-001 1/23/2002 (0-2) ft
Sample Type:			Duplicate							Duplicate	
	Units										
4-Bromophenyl phenyl ether	mg/kg										0.42 U
4-Chloro-3-methylphenol	mg/kg										0.42 U
4-Chloroaniline	mg/kg										0.42 U
4-Chlorophenyl phenyl ether	mg/kg										0.42 U
4-Methylphenol	mg/kg										0.42 U
4-Nitroaniline	mg/kg										2.1 U
4-Nitrophenol	mg/kg										2.1 U
Acenaphthene	mg/kg										0.42 U
Acenaphthylene	mg/kg										0.42 U
Acetophenone	mg/kg										0.42 U
Anthracene	mg/kg										0.42 U
Atrazine	mg/kg										0.42 U
Benzaldehyde	mg/kg										0.42 U
Benzo(a)anthracene	mg/kg										0.42 U
Benzo(a)pyrene	mg/kg										0.42 U
Benzo(b)fluoranthene	mg/kg										0.42 U
Benzo(g,h,i)perylene	mg/kg										0.42 U
Benzo(k)fluoranthene	mg/kg										0.42 U
Biphenyl (1,1-Biphenyl)	mg/kg										0.42 U
bis(2-Chloroethoxy)methane	mg/kg										0.42 U
bis(2-Chloroethyl)ether	mg/kg										0.42 U
bis(2-Ethylhexyl)phthalate (DEHP)	mg/kg										0.42 U
Butyl benzylphthalate (BBP)	mg/kg										0.42 U
Caprolactam	mg/kg										0.42 U
Carbazole	mg/kg										0.42 U
Chrysene	mg/kg										0.42 U
Dibenz(a,h)anthracene	mg/kg										0.42 U
Dibenzofuran	mg/kg										0.42 U
Diethyl phthalate	mg/kg										0.42 U
Dimethyl phthalate	mg/kg										0.42 U
Di-n-butylphthalate (DBP)	mg/kg										0.42 U
Di-n-octyl phthalate (DnOP)	mg/kg										0.42 U
Fluoranthene	mg/kg										0.42 U
Fluorene	mg/kg										0.42 U
Hexachlorobenzene	mg/kg										0.42 U
Hexachlorobutadiene	mg/kg										0.42 U
Hexachlorocyclopentadiene	mg/kg										2.1 U
Hexachloroethane	mg/kg										0.42 U
Indeno(1,2,3-cd)pyrene	mg/kg										0.42 U
Isophorone	mg/kg										0.42 U
Naphthalene	mg/kg										0.42 U
Nitrobenzene	mg/kg										0.42 U
N-Nitrosodi-n-propylamine	mg/kg										0.42 U
N-Nitrosodiphenylamine	mg/kg										0.42 U
Pentachlorophenol	mg/kg										0.42 U
Phenanthrene	mg/kg										0.42 U
Phenol	mg/kg										0.42 U
Pyrene	mg/kg										0.42 U
Tyrene	1116/ NS										0.42 0
Volatile Organic Compounds (VOCs)											
1,1,1-Trichloroethane	mg/kg										0.006 U
1,1,2,2-Tetrachloroethane	mg/kg										0.006 U
1,1,2-Trichloroethane	mg/kg										0.006 U
1,1-Dichloroethane	mg/kg										0.006 U
1,1-Dichloroethene	mg/kg										0.006 U
1,2,4-Trichlorobenzene	mg/kg										0.006 U

Sample Location:		AD-16	AD-16	AD-16	AD-18	AD-18	AD-19	AD-19	AD-20	AD-20	BK-X281Y296
Sample Identification:		S-061405-DD-867	S-061405-DD-868	S-061405-DD-869	S-062105-DD-881	S-062105-DD-882	S-062105-DD-879	S-062105-DD-880	S-062105-DD-877	S-062105-DD-878	S-010223-MO-001
Sample Date:		6/14/2005	6/14/2005	6/14/2005	6/21/2005	6/21/2005	6/21/2005	6/21/2005	6/21/2005	6/21/2005	1/23/2002
Sample Depth:		(0-2) ft	(0-2) ft	(3.5-5.5) ft	(0-2) ft	(4-6) ft	(0-2) ft	(2-4) ft	(0-2) ft	(0-2) ft	(0-2) ft
Sample Type:		, ,,	Duplicate	, ,,	,	, ,,	, ,,	, ,,	, ,,	Duplicate	, ,,
,	Units		•							•	
1,2-Dibromo-3-chloropropane (DBCP)	mg/kg										0.012 U
1,2-Dibromoethane (Ethylene dibromide)	mg/kg										0.006 U
1,2-Dichlorobenzene	mg/kg										0.006 U
1,2-Dichloroethane	mg/kg										0.006 U
1,2-Dichloropropane	mg/kg										0.006 U
1,3-Dichlorobenzene	mg/kg										0.006 U
1,4-Dichlorobenzene	mg/kg										0.006 U
2-Butanone (Methyl ethyl ketone) (MEK)	mg/kg										0.024 U
2-Hexanone	mg/kg										0.024 U
4-Methyl-2-pentanone (Methyl isobutyl ketone) (MIBK)	mg/kg										0.024 U
Acetone	mg/kg										0.017 J
Benzene	mg/kg										0.006 U
Bromodichloromethane	mg/kg										0.006 U
Bromoform	mg/kg										0.006 UJ
Bromomethane (Methyl bromide)	mg/kg										0.006 U
Carbon disulfide	mg/kg										0.006 U
Carbon tetrachloride	mg/kg										0.006 U
Chlorobenzene	mg/kg										0.006 U
Chloroethane	mg/kg										0.006 U
Chloroform (Trichloromethane)	mg/kg										0.006 U
Chloromethane (Methyl chloride)	mg/kg										0.006 U
cis-1,2-Dichloroethene	mg/kg										0.003 U
cis-1,3-Dichloropropene	mg/kg										0.006 U
Cyclohexane	mg/kg										0.012 U
Dibromochloromethane	mg/kg										0.006 U
Dichlorodifluoromethane (CFC-12)	mg/kg										0.006 U
Ethylbenzene	mg/kg										0.006 U
Isopropyl benzene	mg/kg										0.006 U
Methyl acetate	mg/kg										0.012 U
Methyl cyclohexane Methyl tert butyl ether (MTBE)	mg/kg									 	0.012 U 0.024 U
Methylene chloride	mg/kg	 			 	 				 	0.024 U
Styrene	mg/kg mg/kg	 			 				 		0.006 U
Tetrachloroethene	mg/kg	 		 			 		 	 	0.006 U
Toluene	mg/kg	 									0.006 U
trans-1,2-Dichloroethene	mg/kg										0.003 U
trans-1,3-Dichloropropene	mg/kg										0.006 U
Trichloroethene	mg/kg										0.006 U
Trichlorofluoromethane (CFC-11)	mg/kg										0.006 U
Trifluorotrichloroethane (Freon 113)	mg/kg										0.006 U
Vinyl chloride	mg/kg										0.006 U
Xylenes (total)	mg/kg										0.006 U
General Chemistry											
Cyanide (amenable)	mg/kg										0.64 U
Cyanide (total)	mg/kg										0.64 U
Total organic carbon (TOC)	mg/kg										5400
Total solids	%	80.0	80.6	82.5	76.8	81.2	77.9	78.2	82.8	81.7	77.7

Notes

U - Not detected at the associated reporting limit.

J - Estimated concentration.

UJ - Not detected; associated reporting limit is estimated.

Area Sample Location: Sample Identification: Sample Date: Sample Depth: Sample Type:		Background_P216West BK-X281Y296 S-010223-MO-005 1/23/2002 (0-2) ft Duplicate	A007_EastPlantArea CH-41 Abandoned S-040605-JL-1125 4/6/2005 (0-2) ft	A007_EastPlantArea CH-41 Abandoned S-040605-JL-1126 4/6/2005 (2-3) ft	A007_EastPlantArea CH-15 Abandoned S-040505-DD-789 4/5/2005 (0-2) ft	A007_EastPlantArea CH-15 Abandoned S-040505-DD-790 4/5/2005 (2.5-4.5) ft	EastPlantArea CH-15A Abandoned S-061505-DD-871 6/15/2005 (0-2) ft	A007_EastPlantArea CH-16 Abandoned S-040605-KMV-1143 4/6/2005 (0-2) ft	A007_EastPlantArea CH-16 Abandoned S-040605-KMV-1144 4/6/2005 (5-7) ft	A007_EastPlantArea CH-16 Abandoned S-040605-KMV-1145 4/6/2005 (10-12) ft	A007_EastPlantArea CH-16 Abandoned S-040605-KMV-1146 4/6/2005 (13-14) ft	A007_EastPlantArea CH-17 Abandoned S-040705-KMV-1147 4/7/2005 (0-2) ft
PCBs	Units											
Aroclor-1221 (PCB-1221) n Aroclor-1232 (PCB-1232) n Aroclor-1242 (PCB-1242) n Aroclor-1248 (PCB-1248) n Aroclor-1254 (PCB-1254) n	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.042 U 0.042 U 0.042 U 0.042 U 0.042 U 0.042 U 0.042 U	0.087 U 0.087 U 0.087 U 0.087 U 0.27 0.087 U 0.087 U	0.2 U 0.2 U 0.2 U 0.2 U 0.84 0.2 U 0.2 U	0.042 U 0.042 U 0.042 U 0.018 J 0.042 U 0.042 U 0.042 U	0.091 U 0.091 U 0.091 U 0.091 U 0.68 0.091 U 0.091 U	0.042 U 0.042 U 0.042 U 0.042 U 0.027 J 0.042 U 0.042 U	0.21 U 0.21 U 0.21 U 1 0.21 U 0.21 U 0.21 U	0.42 U 0.42 U 0.42 U 2.4 0.42 U 0.42 U 0.42 U	0.9 U 0.9 U 0.9 U 6 0.9 U 0.9 U	4.4 U 4.4 U 4.4 U 26 4.4 U 4.4 U	0.041 U 0.041 U 0.041 U 0.041 U 0.039 J 0.041 U 0.041 U
	mg/kg	ND	0.27	0.84	0.018 J	0.68	0.027 J	1	2.4	6	26	0.039 J
Metals												
Antimony	mg/kg mg/kg mg/kg	13900 7.7 UJ 12.5	 	 	 	 	 	 	 	 	 	
Barium	mg/kg mg/kg	67.3 0.28 J				 	 	 	 	 	 	
Chromium	mg/kg mg/kg	0.64 U 22.0					 	 	 			
Copper n	mg/kg mg/kg mg/kg	10.2 12.9 25400	 	 	 	 	 	 	 	 	 	
Lead	mg/kg mg/kg	17.0 477 J			 	 	 	 	 	 	 	
Nickel	mg/kg mg/kg mg/kg	0.13 U 12.8 0.91	 	 	 	 	 	 	 	 	 	
Silver	mg/kg mg/kg	1.3 U 1.3 U			 	 	 	 	 	 	 	
	mg/kg mg/kg	43.4 45.6 J						 			 	
Semi-Volatile Organic Compounds (SVOCs)												
	mg/kg mg/kg	0.42 U 0.42 U	 	 	 	 	 	 	 	 	 	
2,4,6-Trichlorophenol n 2,4-Dichlorophenol n	mg/kg mg/kg	0.42 U 0.42 U			 	 	 	 	 	 	 	
2,4-Dinitrophenol n 2,4-Dinitrotoluene n	mg/kg mg/kg mg/kg	0.42 U 2 U 0.42 U	 	 	 	 	 	 	 	 	 	
2-Chloronaphthalene n	mg/kg mg/kg mg/kg	0.42 U 0.42 U 0.42 U	 	 	 	 	 	 	 	 	 	
2-Methylnaphthalene n 2-Methylphenol n	mg/kg mg/kg mg/kg	0.42 U 0.42 U 2 U	 	 	 	 	 	 	 	 	 	
2-Nitrophenol n 3,3'-Dichlorobenzidine n	mg/kg mg/kg	0.42 U 2 U		 	 	 	 	 		 	 	
	mg/kg mg/kg	2 U 2 U			 	 	 	 	 	 	 	

Sample Location: Sample Identification: Sample Date: Sample Depth: Sample Type:	BK-X281Y296 S-010223-MO-005 1/23/2002 (0-2) ft Duplicate	CH-41 Abandoned S-040605-JL-1125 4/6/2005 (0-2) ft	CH-41 Abandoned S-040605-JL-1126 4/6/2005 (2-3) ft	CH-15 Abandoned S-040505-DD-789 4/5/2005 (0-2) ft	CH-15 Abandoned S-040505-DD-790 4/5/2005 (2.5-4.5) ft	CH-15A Abandoned S-061505-DD-871 6/15/2005 (0-2) ft	CH-16 Abandoned S-040605-KMV-1143 4/6/2005 (0-2) ft	CH-16 Abandoned S-040605-KMV-1144 4/6/2005 (5-7) ft	CH-16 Abandoned S-040605-KMV-1145 4/6/2005 (10-12) ft	CH-16 Abandoned S-040605-KMV-1146 4/6/2005 (13-14) ft	CH-17 Abandoned S-040705-KMV-1147 4/7/2005 (0-2) ft
Units	•										
4-Bromophenyl phenyl ether mg/kg	0.42 U										
4-Chloro-3-methylphenol mg/kg	0.42 U										
4-Chloroaniline mg/kg	0.42 U										
4-Chlorophenyl phenyl ether mg/kg	0.42 U										
4-Methylphenol mg/kg	0.42 U										
4-Nitroaniline mg/kg	2 U										
4-Nitrophenol mg/kg	2 U										
Acenaphthene mg/kg	0.42 U										
Acenaphthylene mg/kg	0.42 U										
Acetophenone mg/kg	0.42 U										
Anthracene mg/kg	0.42 U										
Atrazine mg/kg	0.42 U										
Benzaldehyde mg/kg	0.42 U										
Benzo(a)anthracene mg/kg Benzo(a)pyrene mg/kg	0.42 U 0.42 U	 			 	 		 		 	
Benzo(b)fluoranthene mg/kg	0.42 U	 			 	 			 		
Benzo(g,h,i)perylene mg/kg	0.42 U	 	 		 	 		 	 		
Benzo(k)fluoranthene mg/kg	0.42 U										
Biphenyl (1,1-Biphenyl) mg/kg	0.42 U										
bis(2-Chloroethoxy)methane mg/kg	0.42 U										
bis(2-Chloroethyl)ether mg/kg	0.42 U										
bis(2-Ethylhexyl)phthalate (DEHP) mg/kg	0.42 U										
Butyl benzylphthalate (BBP) mg/kg	0.42 U										
Caprolactam mg/kg	0.42 U										
Carbazole mg/kg	0.42 U										
Chrysene mg/kg	0.42 U										
Dibenz(a,h)anthracene mg/kg	0.42 U										
Dibenzofuran mg/kg	0.42 U										
Diethyl phthalate mg/kg	0.42 U										
Dimethyl phthalate mg/kg Di-n-butylphthalate (DBP) mg/kg	0.42 U 0.42 U										
Di-n-butylphthalate (DBP) mg/kg Di-n-octyl phthalate (DnOP) mg/kg	0.42 U								 		
Fluoranthene mg/kg	0.42 U	 	 	 	 	 	 	 	 	 	
Fluorene mg/kg	0.42 U										
Hexachlorobenzene mg/kg	0.42 U										
Hexachlorobutadiene mg/kg	0.42 U										
Hexachlorocyclopentadiene mg/kg	2 U										
Hexachloroethane mg/kg	0.42 U										
Indeno(1,2,3-cd)pyrene mg/kg	0.42 U										
Isophorone mg/kg	0.42 U										
Naphthalene mg/kg	0.42 U										
Nitrobenzene mg/kg	0.42 U		==								
N-Nitrosodi-n-propylamine mg/kg	0.42 U										
N-Nitrosodiphenylamine mg/kg Pentachlorophenol mg/kg	0.42 U 0.42 U										
Pentachlorophenol mg/kg Phenanthrene mg/kg	0.42 U								 		
Phenol mg/kg	0.42 U										
Pyrene mg/kg	0.42 U										
Volatile Organic Compounds (VOCs)											
1,1,1-Trichloroethane mg/kg	0.0057 U										
1,1,2,2-Tetrachloroethane mg/kg	0.0057 U										
1,1,2-Trichloroethane mg/kg	0.0057 U										
1,1-Dichloroethane mg/kg	0.0057 U										
1,1-Dichloroethene mg/kg	0.0057 U										
1,2,4-Trichlorobenzene mg/kg	0.0057 U										

Seminate Information Seminate Information	Sample Location:	BK-X281Y296	CH-41 Abandoned	CH-41 Abandoned	CH-15 Abandoned	CH-15 Abandoned	CH-15A Abandoned	CH-16 Abandoned	CH-16 Abandoned	CH-16 Abandoned	CH-16 Abandoned	CH-17 Abandoned
Page	Sample Identification:	S-010223-MO-005	S-040605-JL-1125	S-040605-JL-1126	S-040505-DD-789	S-040505-DD-790	S-061505-DD-871	S-040605-KMV-1143	S-040605-KMV-1144	S-040605-KMV-1145	S-040605-KMV-1146	S-040705-KMV-1147
Desire D	Sample Date:	1/23/2002	4/6/2005	4/6/2005	4/5/2005	4/5/2005	6/15/2005	4/6/2005	4/6/2005	4/6/2005	4/6/2005	4/7/2005
1,2 1,2	Sample Depth:	(0-2) ft	(0-2) ft	(2-3) ft	(0-2) ft	(2.5-4.5) ft	(0-2) ft	(0-2) ft	(5-7) ft	(10-12) ft	(13-14) ft	(0-2) ft
Descriptions of DECTY	Sample Type:											
1.5 1.5		•										
1.2. 1.2.		0.011 U										
2. Decisionalization Control C												
2. Definitions 1. Definition 1. Definiti												
1.5 Contemprenance mg/kg Contemprenanc												
1.5 1.5	9. 9											
A Characterischerische Paging												
2		0.0057 U										
A -												
Asteriors (Methyl isotophyl kerole) MIRIS)												
Actorie mg/kg 0.0057		0.023 U										
Servence		0.013 J										
Commontation mg/kg mg/kg		0.0057 U										
Semonter Semonter												
Bernamelhane Methyl thromisk) mg/kg 0.0057 U		0.0057 UJ										
Carbon terrolisholide		0.0057 U										
Cathor trianshiprofe mg/kg 0.0057 U		0.0057 U										
Chlorophorene		0.0057 U										
Chloroptem Trichleromethane mg/kg 0.0057 U		0.0057 U										
Chloropferm (Tichleromethane) mg/kg 0.0057 U		0.0057 U										
Chloromethane (Methyl tholride) chi 3,12 Dichi protente		0.0057 U										
Cist 2.10 inhighter mg/kg 0.0028 U		0.0057 U										
Colobropropene												
Cyclobeane mg/kg 0.011		0.0057 U										
Discharcementance mg/kg 0.0057 U		0.011 U										
Etylopherzene		0.0057 U										
Soproyl benzene mg/kg 0.0057 U	Dichlorodifluoromethane (CFC-12) mg/kg	0.0057 U										
Methyl acetate mg/kg 0.011 U	Ethylbenzene mg/kg	0.0057 U										
Methyl cyclohexane mg/kg 0.011 U	Isopropyl benzene mg/kg	0.0057 U										
Methylere (MTBE)	Methyl acetate mg/kg	0.011 U										
Methylene chloride mg/kg 0.0057 U	Methyl cyclohexane mg/kg	0.011 U										
Styren	Methyl tert butyl ether (MTBE) mg/kg	0.023 U										
Tetrachloroethene mg/kg 0.0057 U	Methylene chloride mg/kg	0.0057 U										
Toluene mg/kg 0.0057 U												
trans-1,2-Dichloroethene mg/kg 0.0028 U	Tetrachloroethene mg/kg											
trans-1,3-Dichloropropene mg/kg 0.0057 U	Toluene mg/kg											
Trichloroethene mg/kg 0.0057 U	trans-1,2-Dichloroethene mg/kg	0.0028 U										
Trichlorofluoromethane (CFC-11) mg/kg 0.0057 U <th>trans-1,3-Dichloropropene mg/kg</th> <th></th>	trans-1,3-Dichloropropene mg/kg											
Trifluorotrichloroethane (Freon 113) mg/kg 0.0057 U												
Vinyl chloride mg/kg mg/kg 0.0057 U mg/kg												
Xylenes (total) mg/kg 0.0057 U												
General Chemistry Cyanide (amenable) mg/kg 0.64 U Cyanide (total) mg/kg 0.64 U												
Cyanide (amenable) mg/kg 0.64 U <th>Xylenes (total) mg/kg</th> <th>0.0057 U</th> <th></th>	Xylenes (total) mg/kg	0.0057 U										
Cyanide (total) mg/kg 0.64 U	General Chemistry											
Cyanide (total) mg/kg 0.64 U	Cyanide (amenable) mg/kg	0.64 U										
Total organic carbon (TOC) mg/kg 5800												

Notes:

U - Not detected at the associated reporting limit.

J - Estimated concentration.

UJ - Not detected; associated reporting limit is estimated.

Area Sample Location: Sample Identification: Sample Date: Sample Depth: Sample Type:	A007_EastPlantArea CH-17 Abandoned S-040705-KMV-1148 4/7/2005 (0-2) ft Duplicate	A007_EastPlantArea CH-17 Abandoned S-040705-KMV-1149 4/7/2005 (6-8) ft	EastPlantArea CH-17A Abandoned S-061505-DD-870 6/15/2005 (0-2) ft	A007_EastPlantArea CH-18 Abandoned S-041405-KMV-1138 4/14/2005 (0-2) ft	A007_EastPlantArea CH-18 Abandoned S-041405-KMV-1139 4/14/2005 (5-7) ft	A007_EastPlantArea CH-18 Abandoned S-041405-KMV-1140 4/14/2005 (10-12) ft	A007_EastPlantArea CH-18 Abandoned S-041405-KMV-1141 4/14/2005 (15-17) ft	A007_EastPlantArea CH-19 S-041805-KMV-1157 4/18/2005 (0-2) ft	A007_EastPlantArea CH-19 S-041805-KMV-1158 4/18/2005 (5-7) ft	A007_EastPlantArea CH-20 S-041905-KMV-1161 4/19/2005 (0-2) ft	A007_EastPlantArea CH-20 S-041905-KMV-1162 4/19/2005 (5-7) ft
PCBs Units											
Aroclor-1016 (PCB-1016) mg/kg Aroclor-1221 (PCB-1221) mg/kg Aroclor-1232 (PCB-1232) mg/kg Aroclor-1242 (PCB-1242) mg/kg Aroclor-1248 (PCB-1248) mg/kg Aroclor-1254 (PCB-1254) mg/kg Aroclor-1260 (PCB-1260) mg/kg Total PCBs	0.041 U 0.041 U 0.044 0.041 U 0.041 U 0.041 U	0.045 U 0.045 U 0.045 U 0.045 U 0.015 J 0.045 UJ 0.045 UJ	0.84 U 0.84 U 0.84 U 0.84 U 5.9 0.84 U 0.48 J 6.38 J	0.041 U 0.041 U 0.041 U 0.041 U 0.041 U 0.041 U 0.041 U ND	0.042 U 0.042 U 0.042 U 0.042 U 0.042 U 0.042 U 0.042 U ND	0.042 U 0.042 U 0.042 U 0.059 0.042 U 0.042 U 0.042 U 0.059	0.044 U 0.044 U 0.044 U 0.27 0.044 U 0.044 U 0.044 U 0.27	0.041 U 0.041 U 0.041 U 0.041 U 0.041 U 0.041 U 0.041 U ND	0.042 U 0.042 U 0.042 U 0.042 U 0.042 U 0.042 U 0.042 U ND	0.04 U 0.04 U 0.04 U 0.04 U 0.04 U 0.04 U 0.04 U ND	0.045 U 0.045 U 0.045 U 0.026 J 0.045 U 0.045 U 0.045 U 0.026 J
Metals											
Aluminum mg/kg Antimony mg/kg Arsenic mg/kg Barium mg/kg Beryllium mg/kg Cadmium mg/kg Chromium mg/kg Cobalt mg/kg Copper mg/kg Iron mg/kg Manganese mg/kg Mercury mg/kg Nickel mg/kg Selenium mg/kg Selenium mg/kg Silver mg/kg Thallium mg/kg Vanadium mg/kg Zinc mg/kg											
Semi-Volatile Organic Compounds (SVOCs)											
2,2'-Oxybis(1-chloropropane) (bis(2-Chloroisopropyl) ether) 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dinderophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Chlorophenol 2-Chlorophenol 2-Chlorophenol 3-Wethylphenol 2-Methylphenol 2-Methylphenol 3-Nitroaniline 3-Nitroaniline 4,6-Dinitro-2-methylphenol mg/kg mg/kg				 	 	 	 	 	 		

013968-RPT365 Tables - 10/14/2014

Sample Location: Sample Identification: Sample Date: Sample Depth: Sample Type:	CH-17 Abandoned S-040705-KMV-1148 4/7/2005 (0-2) ft Duplicate	CH-17 Abandoned S-040705-KMV-1149 4/7/2005 (6-8) ft	CH-17A Abandoned S-061505-DD-870 6/15/2005 (0-2) ft	CH-18 Abandoned S-041405-KMV-1138 4/14/2005 (0-2) ft	CH-18 Abandoned S-041405-KMV-1139 4/14/2005 (5-7) ft	CH-18 Abandoned S-041405-KMV-1140 4/14/2005 (10-12) ft	CH-18 Abandoned S-041405-KMV-1141 4/14/2005 (15-17) ft	CH-19 S-041805-KMV-1157 4/18/2005 (0-2) ft	CH-19 S-041805-KMV-1158 4/18/2005 (5-7) ft	CH-20 S-041905-KMV-1161 4/19/2005 (0-2) ft	CH-20 S-041905-KMV-1162 4/19/2005 (5-7) ft
Units											
4-Bromophenyl phenyl ether mg/kg											
4-Chloro-3-methylphenol mg/kg											
4-Chloroaniline mg/kg											
4-Chlorophenyl phenyl ether mg/kg 4-Methylphenol mg/kg											
4-Methylphenol mg/kg 4-Nitroaniline mg/kg											
4-Nitrophenol mg/kg											
Acenaphthene mg/kg											
Acenaphthylene mg/kg											
Acetophenone mg/kg											
Anthracene mg/kg											
Atrazine mg/kg											
Benzaldehyde mg/kg Benzo(a)anthracene mg/kg				 		 					
Benzo(a)pyrene mg/kg											
Benzo(b)fluoranthene mg/kg											
Benzo(g,h,i)perylene mg/kg											
Benzo(k)fluoranthene mg/kg											
Biphenyl (1,1-Biphenyl) mg/kg											
bis(2-Chloroethoxy)methane mg/kg											
bis(2-Chloroethyl)ether mg/kę bis(2-Ethylhexyl)phthalate (DEHP) mg/kę											
Butyl benzylphthalate (BBP) mg/kg											
Caprolactam mg/kg											
Carbazole mg/kg	g										
Chrysene mg/kg											
Dibenz(a,h)anthracene mg/kg											
Dibenzofuran mg/kg Diethyl phthalate mg/kg											
Dimethyl phthalate mg/kg											
Di-n-butylphthalate (DBP) mg/kg											
Di-n-octyl phthalate (DnOP) mg/kg											
Fluoranthene mg/kg											
Fluorene mg/kį Hexachlorobenzene mg/kį				 					 		
Hexachlorobenzene mg/kg Hexachlorobutadiene mg/kg		 	 	 	 			 	 	 	
Hexachlorocyclopentadiene mg/kg											
Hexachloroethane mg/kg											
Indeno(1,2,3-cd)pyrene mg/kg											
Isophorone mg/kg											
Naphthalene mg/kg Nitrobenzene mg/kg											
N-Nitrosodi-n-propylamine mg/kg											
N-Nitrosodiphenylamine mg/kg											
Pentachlorophenol mg/kg											
Phenanthrene mg/kg											
Phenol mg/kg											
Pyrene mg/kg	g										
Volatile Organic Compounds (VOCs)											
1,1,1-Trichloroethane mg/kg	g										
1,1,2,2-Tetrachloroethane mg/kg	g										
1,1,2-Trichloroethane mg/kg											
1,1-Dichloroethane mg/kg											
1,1-Dichloroethene mg/kg 1,2,4-Trichlorobenzene mg/kg					 	 	 	 		 	
11g/kg	·		. -							<u></u>	- -

Sample Location: Sample Identification:	CH-17 Abandoned S-040705-KMV-1148	CH-17 Abandoned S-040705-KMV-1149	CH-17A Abandoned S-061505-DD-870	CH-18 Abandoned S-041405-KMV-1138	CH-18 Abandoned S-041405-KMV-1139	CH-18 Abandoned S-041405-KMV-1140	CH-18 Abandoned S-041405-KMV-1141	CH-19 S-041805-KMV-1157	CH-19 S-041805-KMV-1158	CH-20 S-041905-KMV-1161	CH-20 S-041905-KMV-1162
Sample Date:	4/7/2005	4/7/2005	6/15/2005	4/14/2005	4/14/2005	4/14/2005	4/14/2005	4/18/2005	4/18/2005	4/19/2005	4/19/2005
Sample Depth:	(0-2) ft	(6-8) ft	(0-2) ft	(0-2) ft	(5-7) ft	(10-12) ft	(15-17) ft	(0-2) ft	(5-7) ft	(0-2) ft	(5-7) ft
Sample Type:	Duplicate										
Ui	its										
1,2-Dibromo-3-chloropropane (DBCP) mg	:/kg										
	/kg										
	:/kg										
1,2-Dichloroethane mg	/kg										
	/kg										
	/kg										
	/kg										
	:/kg										
	/kg										
	:/kg										
	/kg										
	/kg										
	/kg										
	/kg										
	/kg										
	:/kg										
Carbon tetrachloride mg	:/kg										
Chlorobenzene m _g	:/kg										
Chloroethane m _g	/kg										
Chloroform (Trichloromethane) mg	:/kg										
Chloromethane (Methyl chloride) mg	:/kg										
cis-1,2-Dichloroethene mg	/kg										
cis-1,3-Dichloropropene mg	/kg										
	/kg										
	/kg										
	/kg										
	/kg										
	/kg										
	/kg										
	/kg										
	/kg										
	/kg										
	/kg										
	/kg										
	/kg										
	/kg										
	/kg										
	/kg										
	/kg										
Trifluorotrichloroethane (Freon 113)	/kg										
Vinyl chloride mg	/kg										
Xylenes (total) mg	/kg										
General Chemistry											
Cyanide (amenable) mg	/kg										
	/kg										
	/kg										
	% 80.3	72.8	78.1	79.8	77.9	78.5	74.4	79.7	78.9	83.0	73.1

Notes

U - Not detected at the associated reporting limit.

J - Estimated concentration.

UJ - Not detected; associated reporting limit is estimated.

Area Sample Location: Sample Identification: Sample Date: Sample Depth: Sample Type:		A007_EastPlantArea CH-20 S-041905-KMV-1163 4/19/2005 (10-12) ft	A007_EastPlantArea CH-20 S-041905-KMV-1165 4/19/2005 (10-12) ft Duplicate	A007_EastPlantArea CH-20 S-041905-KMV-1164 4/19/2005 (13.5-13.5) ft	A007_EastPlantArea CH-21 Abandoned S-042005-JL-1170 4/20/2005 (0-2) ft	A007_EastPlantArea CH-21 Abandoned S-042005-JL-1171 4/20/2005 (5-7) ft	A007_EastPlantArea CH-21 Abandoned S-042005-JL-1172 4/20/2005 (10-11.5) ft	A007_EastPlantArea CH-22 S-042005-KMV-1181 4/20/2005 (0-2) ft	A007_EastPlantArea CH-22 S-042005-KMV-1182 4/20/2005 (5-7) ft	A007_EastPlantArea CH-22 S-042005-KMV-1183 4/20/2005 (9-9) ft	A007_EastPlantArea CH-23 S-042105-JL-1173 4/21/2005 (0-2) ft	A007_EastPlantArea CH-24 Abandoned S-042105-JL-1174 4/21/2005 (0-2) ft
PCBs	Units											
Aroclor-1016 (PCB-1016) Aroclor-1221 (PCB-1221) Aroclor-1232 (PCB-1232) Aroclor-1242 (PCB-1242) Aroclor-1248 (PCB-1248) Aroclor-1254 (PCB-1254) Aroclor-1260 (PCB-1260) Total PCBs	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.046 U 0.046 U 0.046 U 0.046 U 0.046 U 0.046 U 0.046 U ND	0.045 U 0.045 U 0.045 U 0.045 U 0.045 U 0.045 U 0.045 U ND	0.045 U 0.045 U 0.045 U 0.045 U 0.045 U 0.045 U 0.045 U	0.042 U 0.042 U 0.042 U 0.042 U 0.34 0.042 U 0.042 U 0.34	0.041 U 0.041 U 0.041 U 0.041 U 0.041 U 0.041 U 0.041 U	0.044 U 0.044 U 0.044 U 0.044 U 0.044 U 0.044 U 0.044 U ND	0.041 U 0.041 U 0.041 U 0.041 U 0.041 U 0.041 U 0.041 U	0.043 U 0.043 U 0.043 U 0.043 U 0.05 0.043 U 0.043 U 0.05	0.043 U 0.043 U 0.043 U 0.043 U 0.012 J 0.043 U 0.043 U 0.012 J	0.042 U 0.042 U 0.042 U 0.042 U 0.042 U 0.042 U 0.042 U ND	0.041 U 0.041 U 0.041 U 0.041 U 0.4 0.041 U 0.13 0.53
Metals												
Aluminum Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper Iron Lead	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	 	 	 	 	 	 	 	 	 	 	
Manganese Mercury Nickel Selenium Silver Thallium Vanadium Zinc	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	 	 	 	 	 	 	 	 	 	 	
Semi-Volatile Organic Compounds (SVOCs) 2,2'-Oxybis(1-chloropropane) (bis(2-Chloroisopropyl) ether) 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dichlorophenol 2,4-Dimethylphenol	mg/kg mg/kg mg/kg mg/kg mg/kg	 	 	 	 	 	 	 	 	 	 	
2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Chloronaphthalene 2-Chlorophenol 2-Methylnaphthalene 2-Methylphenol	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	 	 	 	 	 	 	 	 	 	 	
2-Nitroaniline 2-Nitrophenol 3,3'-Dichlorobenzidine 3-Nitroaniline 4,6-Dinitro-2-methylphenol	mg/kg mg/kg mg/kg mg/kg mg/kg	 	 	 	 	 	 	 	 	 	 	

Sample Location: Sample Identification: Sample Date:	CH-20 S-041905-KMV-1163 4/19/2005	CH-20 S-041905-KMV-1165 4/19/2005	CH-20 S-041905-KMV-1164 4/19/2005	CH-21 Abandoned S-042005-JL-1170 4/20/2005	CH-21 Abandoned S-042005-JL-1171 4/20/2005	CH-21 Abandoned S-042005-JL-1172 4/20/2005	CH-22 S-042005-KMV-1181 4/20/2005	CH-22 S-042005-KMV-1182 4/20/2005	CH-22 S-042005-KMV-1183 4/20/2005	CH-23 S-042105-JL-1173 4/21/2005	CH-24 Abandoned S-042105-JL-1174 4/21/2005
Sample Date: Sample Depth:											
Sample Type:	(10-12) ft	(10-12) ft Duplicate	(13.5-13.5) ft	(0-2) ft	(5-7) ft	(10-11.5) ft	(0-2) ft	(5-7) ft	(9-9) ft	(0-2) ft	(0-2) ft
Sumple Type. Units		Duplicate									
4-Bromophenyl phenyl ether mg/kg											
4-Chloro-3-methylphenol mg/kg 4-Chloroaniline mg/kg											
5. 5											
4-Chlorophenyl phenyl ether mg/kg 4-Methylphenol mg/kg					 					 	
4-Nitroaniline mg/kg											
4-Nitrophenol mg/kg											
Acenaphthene mg/kg											
Acenaphthylene mg/kg											
Acetophenone mg/kg											
Anthracene mg/kg											
Atrazine mg/kg											
Benzaldehyde mg/kg											
Benzo(a)anthracene mg/kg											
Benzo(a)pyrene mg/kg											
Benzo(b)fluoranthene mg/kg											
Benzo(g,h,i)perylene mg/kg											
Benzo(k)fluoranthene mg/kg											
Biphenyl (1,1-Biphenyl) mg/kg											
bis(2-Chloroethoxy)methane mg/kg											
bis(2-Chloroethyl)ether mg/kg											
bis(2-Ethylhexyl)phthalate (DEHP) mg/kg											
Butyl benzylphthalate (BBP) mg/kg											
Caprolactam mg/kg											
Carbazole mg/kg											
Chrysene mg/kg		==				==					
Dibenz(a,h)anthracene mg/kg											
Dibenzofuran mg/kg											
Diethyl phthalate mg/kg Dimethyl phthalate mg/kg											
Dimethyl phthalate mg/kg Di-n-butylphthalate (DBP) mg/kg				 						 	
Di-n-octyl phthalate (DnOP) mg/kg						<u></u>					
Fluoranthene mg/kg											
Fluorene mg/kg											
Hexachlorobenzene mg/kg											
Hexachlorobutadiene mg/kg											
Hexachlorocyclopentadiene mg/kg											
Hexachloroethane mg/kg											
Indeno(1,2,3-cd)pyrene mg/kg											
Isophorone mg/kg											
Naphthalene mg/kg											
Nitrobenzene mg/kg											
N-Nitrosodi-n-propylamine mg/kg											
N-Nitrosodiphenylamine mg/kg											
Pentachlorophenol mg/kg											
Phenanthrene mg/kg		==				==					
Phenol mg/kg											
Pyrene mg/kg											
Volatile Organic Compounds (VOCs)											
1,1,1-Trichloroethane mg/kg											
1,1,2,2-Tetrachloroethane mg/kg											
1,1,2-Trichloroethane mg/kg											
1,1-Dichloroethane mg/kg											
1,1-Dichloroethene mg/kg											
1,2,4-Trichlorobenzene mg/kg											
5 5											

Sample Location:	CH-20	СН-20	CH-20	CH-21 Abandoned	CH-21 Abandoned	CH-21 Abandoned	СН-22	CH-22	CH-22	CH-23	CH-24 Abandoned
Sample Identification:	S-041905-KMV-1163	S-041905-KMV-1165	S-041905-KMV-1164	S-042005-JL-1170	S-042005-JL-1171	S-042005-JL-1172	S-042005-KMV-1181	S-042005-KMV-1182	S-042005-KMV-1183	S-042105-JL-1173	S-042105-JL-1174
Sample Date:	4/19/2005	4/19/2005	4/19/2005	4/20/2005	4/20/2005	4/20/2005	4/20/2005	4/20/2005	4/20/2005	4/21/2005	4/21/2005
Sample Depth:	(10-12) ft	(10-12) ft	(13.5-13.5) ft	(0-2) ft	(5-7) ft	(10-11.5) ft	(0-2) ft	(5-7) ft	(9-9) ft	(0-2) ft	(0-2) ft
Sample Type:		Duplicate									
Units	i										
1,2-Dibromo-3-chloropropane (DBCP) mg/k											
1,2-Dibromoethane (Ethylene dibromide) mg/k											
1,2-Dichlorobenzene mg/k											
1,2-Dichloroethane mg/k											
1,2-Dichloropropane mg/k	g										
1,3-Dichlorobenzene mg/k	g										
1,4-Dichlorobenzene mg/k	g										
2-Butanone (Methyl ethyl ketone) (MEK) mg/k	g										
2-Hexanone mg/k	g										
4-Methyl-2-pentanone (Methyl isobutyl ketone) (MIBK) mg/k											
Acetone mg/k	g										
Benzene mg/k											
Bromodichloromethane mg/k											
Bromoform mg/k											
Bromomethane (Methyl bromide) mg/k											
Carbon disulfide mg/k											
Carbon tetrachloride mg/k											
Chlorobenzene mg/k											
Chloroethane mg/k											
Chloroform (Trichloromethane) mg/k											
Chloromethane (Methyl chloride) mg/k											
cis-1,2-Dichloroethene mg/k											
cis-1,3-Dichloropropene mg/k											
Cyclohexane mg/k									==		
Dibromochloromethane mg/k											
Dichlorodifluoromethane (CFC-12) mg/k											
Ethylbenzene mg/k											
Isopropyl benzene mg/k											
Methyl acetate mg/k Methyl cyclohexane mg/k											
			 		 				 		
Methyl tert butyl ether (MTBE) mg/k Methylene chloride mg/k				 	 			 	 	 	
Styrene mg/k											
Tetrachloroethene mg/k		 		 		 		 	 	 	
Toluene mg/k											
trans-1,2-Dichloroethene mg/k											
trans-1,3-Dichloropropene mg/k											
Trichloroethene mg/k											
Trichlorofluoromethane (CFC-11) mg/k											
Trifluorotrichloroethane (Freon 113) mg/k											
Vinyl chloride mg/k	g										
Xylenes (total) mg/k											
General Chemistry											
Cyanide (amenable) mg/k	g										
Cyanide (total) mg/k	g										
Total organic carbon (TOC) mg/k	g										
Total solids %	72.0	72.6	72.9	78.9	80.9	75.2	79.5	76.5	77.3	78.1	80.2

Notes

U - Not detected at the associated reporting limit.

J - Estimated concentration.

UJ - Not detected; associated reporting limit is estimated.

Area Sample Location: Sample Identification: Sample Date: Sample Depth: Sample Type:	Units	A007_EastPlantArea CH-24 Abandoned S-042105-JL-1175 4/21/2005 (5-7) ft	A007_EastPlantArea CH-24 Abandoned S-042105-JL-1176 4/21/2005 (5-7) ft Duplicate	A007_EastPlantArea CH-24 Abandoned S-042105-JL-1177 4/21/2005 (9-9.5) ft	A007_EastPlantArea CH-25 Abandoned S-042105-JL-1178 4/21/2005 (0-2) ft	A007_EastPlantArea CH-25 Abandoned S-042105-JL-1179 4/21/2005 (5-7) ft	A007_EastPlantArea CH-25 Abandoned S-042105-JL-1180 4/21/2005 (10-12) ft	A007_EastPlantArea CH-25 Abandoned S-042105-JL-1181 4/21/2005 (14-16) ft	P215EastPlantArea P-1 S-215-062205-DD-889 6/22/2005 (0-2) ft	P215EastPlantArea P-1 S-215-062205-DD-890 6/22/2005 (2-4) ft	P215EastPlantArea P-2 S-215-062205-DD-891 6/22/2005 (0-2) ft
Aroclor-1016 (PCB-1016)	mg/kg		0.044 U	0.04 U	0.043 UJ	0.042 U	0.04 U	0.043 U	0.043 UJ	0.041 U	0.039 U
Aroclor-1221 (PCB-1221)	mg/kg		0.044 U	0.04 U	0.043 UJ	0.042 U	0.04 U	0.043 U	0.043 UJ	0.041 U	0.039 U
Aroclor-1232 (PCB-1232)	mg/kg		0.044 U	0.04 U	0.043 UJ	0.042 U	0.04 U	0.043 U	0.043 UJ	0.041 U	0.039 U
Aroclor-1242 (PCB-1242)	mg/kg		0.044 U	0.04 U	0.043 UJ	0.042 U	0.04 U	0.043 U	0.043 UJ	0.041 U	0.039 U
Aroclor-1248 (PCB-1248)	mg/kg		0.044 U	0.007 J	0.013 J	0.042 U	0.04 U	0.043 U	0.043 UJ	0.041 U	0.039 U
Aroclor-1254 (PCB-1254)	mg/kg		0.044 U	0.04 U	0.043 UJ	0.042 U	0.04 U	0.043 U	0.043 UJ	0.041 U	0.039 U
Aroclor-1260 (PCB-1260)	mg/kg		0.044 U	0.04 U	0.043 UJ	0.042 U	0.04 U	0.043 U	0.043 UJ	0.041 U	0.039 U
Total PCBs	mg/kg	0.041 J	ND	0.007 J	0.013 J	ND	ND	ND	ND	ND	ND
Metals											
Aluminum	mg/kg										
Antimony	mg/kg										
Arsenic	mg/kg										
Barium	mg/kg										
Beryllium	mg/kg										
Cadmium	mg/kg										
Chromium	mg/kg										
Cobalt	mg/kg										
Copper	mg/kg										
Iron	mg/kg										
Lead	mg/kg										
Manganese	mg/kg										
Mercury	mg/kg										
Nickel	mg/kg										
Selenium	mg/kg										
Silver	mg/kg										
Thallium	mg/kg										
Vanadium	mg/kg										
Zinc	mg/kg										
Semi-Volatile Organic Compounds (SVOCs)											
2,2'-Oxybis(1-chloropropane) (bis(2-Chloroisopropyl) ether)	mg/kg										
2,4,5-Trichlorophenol	mg/kg										
2,4,6-Trichlorophenol	mg/kg										
2,4-Dichlorophenol	mg/kg										
2,4-Dimethylphenol	mg/kg										
2,4-Dinitrophenol	mg/kg										
2,4-Dinitrotoluene	mg/kg										
2,6-Dinitrotoluene	mg/kg										
2-Chloronaphthalene	mg/kg										
2-Chlorophenol 2-Methylnaphthalene	mg/kg mg/kg										
2-Methylphenol	mg/kg							 	 	 	
2-Nitroaniline	mg/kg	 	 	 	 	 	 				
2-Nitrophenol	mg/kg										
3,3'-Dichlorobenzidine	mg/kg										
3-Nitroaniline	mg/kg										
4,6-Dinitro-2-methylphenol	mg/kg										

Sample Location: Sample Identification:	CH-24 Abandoned S-042105-JL-1175	CH-24 Abandoned S-042105-JL-1176	CH-24 Abandoned S-042105-JL-1177	CH-25 Abandoned S-042105-JL-1178	CH-25 Abandoned S-042105-JL-1179	CH-25 Abandoned S-042105-JL-1180	CH-25 Abandoned S-042105-JL-1181	P-1 S-215-062205-DD-889	P-1 S-215-062205-DD-890	P-2 S-215-062205-DD-891
Sample Date:	4/21/2005	4/21/2005	4/21/2005	4/21/2005	4/21/2005	4/21/2005	4/21/2005	6/22/2005	6/22/2005	6/22/2005
Sample Depth:	(5-7) ft	(5-7) ft	(9-9.5) ft	(0-2) ft	(5-7) ft	(10-12) ft	(14-16) ft	(0-2) ft	(2-4) ft	(0-2) ft
Sample Type:		Duplicate								
Units										
4-Bromophenyl phenyl ether mg/kg										
4-Chloro-3-methylphenol mg/kg										
4-Chloroaniline mg/kg										
4-Chlorophenyl phenyl ether mg/kg										
4-Methylphenol mg/kg										
4-Nitroaniline mg/kg										
4-Nitrophenol mg/kg										
Acenaphthene mg/kg										
Acenaphthylene mg/kg										
Acetophenone mg/kg										
Anthracene mg/kg										
Atrazine mg/kg										
Benzaldehyde mg/kg										
Benzo(a)anthracene mg/kg										
Benzo(a)pyrene mg/kg		 								
										
Benzo(g,h,i)perylene mg/kg Benzo(k)fluoranthene mg/kg										
										
Biphenyl (1,1-Biphenyl) mg/kg										
bis(2-Chloroethoxy)methane mg/kg										
bis(2-Chloroethyl)ether mg/kg										
bis(2-Ethylhexyl)phthalate (DEHP) mg/kg										
Butyl benzylphthalate (BBP) mg/kg										
Caprolactam mg/kg										
Carbazole mg/kg										
Chrysene mg/kg										
Dibenz(a,h)anthracene mg/kg										
Dibenzofuran mg/kg										
Diethyl phthalate mg/kg										
Dimethyl phthalate mg/kg										
Di-n-butylphthalate (DBP) mg/kg										
Di-n-octyl phthalate (DnOP) mg/kg										
Fluoranthene mg/kg										
Fluorene mg/kg										
Hexachlorobenzene mg/kg										
Hexachlorobutadiene mg/kg										
Hexachlorocyclopentadiene mg/kg										
Hexachloroethane mg/kg										
Indeno(1,2,3-cd)pyrene mg/kg										
Isophorone mg/kg										
Naphthalene mg/kg										
Nitrobenzene mg/kg		 				 		 		
N-Nitrosodi-n-propylamine mg/kg					== ==					
										
										
Pentachlorophenol mg/kg										
Phenanthrene mg/kg										
Phenol mg/kg										
Pyrene mg/kg										
Volatile Organic Compounds (VOCs)										
1,1,1-Trichloroethane mg/kg	·									
1,1,2,2-Tetrachloroethane mg/kg			 	 	 		 	 		
										
1,1,2-Trichloroethane mg/kg										
1,1-Dichloroethane mg/kg										
1,1-Dichloroethene mg/kg										
1,2,4-Trichlorobenzene mg/kg										

Sample Location: Sample Identification: Sample Date: Sample Depth: Sample Type:	CH-24 Aband S-042105-JL- 4/21/200 (5-7) ft	-1175 S-042105-JL-1176 95 4/21/2005	CH-24 Abandoned S-042105-JL-1177 4/21/2005 (9-9.5) ft	CH-25 Abandoned S-042105-JL-1178 4/21/2005 (0-2) ft	CH-25 Abandoned S-042105-JL-1179 4/21/2005 (5-7) ft	CH-25 Abandoned S-042105-JL-1180 4/21/2005 (10-12) ft	CH-25 Abandoned S-042105-JL-1181 4/21/2005 (14-16) ft	P-1 S-215-062205-DD-889 6/22/2005 (0-2) ft	P-1 S-215-062205-DD-890 6/22/2005 (2-4) ft	P-2 S-215-062205-DD-891 6/22/2005 (0-2) ft
L.	nits									
1,2-Dibromo-3-chloropropane (DBCP)	g/kg									
	g/kg									
	g/kg									
	g/kg									
	g/kg									
	g/kg									
	g/kg									
	g/kg									
	g/kg									
	g/kg g/kg									
	g/kg									
	g/kg g/kg	 	 	 	 	 	 	 	 	
	g/kg									
	g/kg									
	g/kg									
	g/kg									
	g/kg									
	g/kg									
	g/kg									
	g/kg									
	g/kg									
	g/kg									
Cyclohexane n	g/kg									
	g/kg									
	g/kg g/kg								 	
	g/kg	 								
	g/kg									
	g/kg									
	g/kg									
	g/kg									
	g/kg									
	g/kg									
	g/kg									
	g/kg									
	g/kg									
	g/kg									
	g/kg									
Trifluorotrichloroethane (Freon 113)	g/kg									
	g/kg	 			 	 				
	g/kg									
General Chemistry										
Cyanide (amenable)	g/kg									
Cyanide (total)	g/kg									
Total organic carbon (TOC)	g/kg									
Total solids	% 75.3	75.6	82.9	76.9	78.6	82.3	76.8	76.1	80.4	85.4

Notes

U - Not detected at the associated reporting limit.

J - Estimated concentration.

UJ - Not detected; associated reporting limit is estimated.

Units	P215EastPlantArea P-2 S-215-062205-DD-892 6/22/2005 (2-4) ft	EastPlantArea PS-8A S-031705-JC-970 3/17/2005 (0-2) ft	EastPlantArea PS-8B S-031705-JC-972 3/17/2005 (0-2) ft	EastPlantArea PS-8B S-031705-JC-973 3/17/2005 (0-2) ft Duplicate	EastPlantArea PS-9A S-031705-JC-975 3/17/2005 (0-2) ft	EastPlantArea PS-9B S-032105-JC-1016 3/21/2005 (0-2) ft	EastPlantArea PS-9B S-032105-JC-1017 3/21/2005 (2-4) ft	EastPlantArea PS-10A S-031705-JC-977 3/17/2005 (0-2) ft	EastPlantArea PS-10B S-031805-JC-979 3/18/2005 (0-2) ft	EastPlantArea PS-11A S-032105-JC-1014 3/21/2005 (0-2) ft	EastPlantArea PS-11B S-032105-JC-1010 3/21/2005 (0-2) ft	EastPlantArea PS-12A S-032105-JC-1012 3/21/2005 (0-2) ft
Omes												
mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.038 U 0.038 U 0.038 U 0.038 U 0.038 U 0.038 U	0.041 U 0.041 U 0.041 U 0.041 U 0.041 U 0.041 U 0.041 U ND	0.042 U 0.042 U 0.042 U 0.042 U 0.013 J 0.042 U 0.042 U 0.043 J	0.044 U 0.044 U 0.044 U 0.044 U 0.044 U 0.044 U 0.044 U ND	0.044 U 0.044 U 0.044 U 0.044 U 0.044 U 0.044 U 0.044 U	2.1 U 2.1 U 2.1 U 2.1 U 16 2.1 U 2.1 U	0.21 U 0.21 U 0.21 U 0.21 U 0.91 0.21 U 0.21 U 0.91	0.042 U 0.042 U 0.042 U 0.042 U 0.022 J 0.042 U 0.042 U 0.042 U	0.041 U 0.041 U 0.041 U 0.041 U 0.041 U 0.041 U 0.041 U	0.043 U 0.043 U 0.043 U 0.043 U 0.043 U 0.043 U 0.043 U	0.041 U 0.041 U 0.041 U 0.041 U 0.041 U 0.041 U 0.041 U	0.38 U 0.38 U 0.38 U 0.38 U 0.87 0.38 U 0.18 J 1.05 J
mg/kg												
mg/kg												
	mg/kg	## P-2 S-215-062205-DD-892 6/22/2005 (2-4) ft	## S-215-062205-DD-892	P-2	P-2	P-2	P-S-BA P		P-2 P-2 P-5-80 P-5-80 P-5-80 P-5-80 P-5-90 P-5-90	P-2	P-2	P-2

Sample Location:		P-2	PS-8A	PS-8B	PS-8B	PS-9A	PS-9B	PS-9B	PS-10A	PS-10B	PS-11A	PS-11B	PS-12A
Sample Identification:		S-215-062205-DD-892	S-031705-JC-970	S-031705-JC-972	S-031705-JC-973	S-031705-JC-975	S-032105-JC-1016	S-032105-JC-1017	S-031705-JC-977	S-031805-JC-979	S-032105-JC-1014	S-032105-JC-1010	S-032105-JC-1012
Sample Date:		6/22/2005	3/17/2005	3/17/2005	3/17/2005	3/17/2005	3/21/2005	3/21/2005	3/17/2005	3/18/2005	3/21/2005	3/21/2005	3/21/2005
Sample Depth:		(2-4) ft	(0-2) ft	(0-2) ft	(0-2) ft	(0-2) ft	(0-2) ft	(2-4) ft	(0-2) ft	(0-2) ft	(0-2) ft	(0-2) ft	(0-2) ft
Sample Type:					Duplicate								
	Units												
4-Bromophenyl phenyl ether	mg/kg												
4-Chloro-3-methylphenol	mg/kg												
4-Chloroaniline	mg/kg												
4-Chlorophenyl phenyl ether	mg/kg												
4-Methylphenol	mg/kg												
4-Nitroaniline	mg/kg												
4-Nitrophenol	mg/kg												
Acenaphthene	mg/kg												
Acenaphthylene	mg/kg												
Acetophenone	mg/kg												
Anthracene	mg/kg												
Atrazine	mg/kg												
Benzaldehyde	mg/kg												
Benzo(a)anthracene	mg/kg												
Benzo(a)pyrene	mg/kg												
Benzo(b)fluoranthene	mg/kg												
Benzo(g,h,i)perylene	mg/kg	 	<u></u>								 		
Benzo(k)fluoranthene	mg/kg												
Biphenyl (1,1-Biphenyl)	mg/kg												
bis(2-Chloroethoxy)methane	mg/kg												
bis(2-Chloroethyl)ether	mg/kg												
bis(2-Ethylhexyl)phthalate (DEHP)	mg/kg												
Butyl benzylphthalate (BBP)	mg/kg												<u></u>
Caprolactam	mg/kg												<u></u>
Carbazole	mg/kg												
Chrysene	mg/kg	 					 		 	 			
Dibenz(a,h)anthracene	mg/kg	 								 			
Dibenzofuran	mg/kg								 	 			
Diethyl phthalate	mg/kg										 		
Dimethyl phthalate	mg/kg	 								 			
Di-n-butylphthalate (DBP)	mg/kg												
Di-n-octyl phthalate (DnOP)	mg/kg												
Fluoranthene	mg/kg	 			 	 			 	 			
Fluorene	mg/kg									 		 	
Hexachlorobenzene	mg/kg	 											
Hexachlorobutadiene	mg/kg												
Hexachlorocyclopentadiene	mg/kg	 		 	 		 		 	 			
Hexachloroethane	mg/kg	 									 		
Indeno(1,2,3-cd)pyrene	mg/kg				 			 		 			
Isophorone	mg/kg												
Naphthalene	mg/kg	 						 					
Nitrobenzene	mg/kg	 					 	 				 	
N-Nitrosodi-n-propylamine	mg/kg		 								 		
N-Nitrosodiphenylamine	mg/kg				 				 	 			
Pentachlorophenol	mg/kg												
Phenanthrene	mg/kg												
Phenol	mg/kg												
Pyrene	mg/kg												
Volatile Organic Compounds (VOCs)	1116/ NS												
1,1,1-Trichloroethane	mg/kg												
1,1,2,2-Tetrachloroethane	mg/kg												
1,1,2-Trichloroethane	mg/kg												
1,1-Dichloroethane	mg/kg												
1,1-Dichloroethene	mg/kg												
1,2,4-Trichlorobenzene	mg/kg												

Semile inderingeforme Semile index Semile	Sample Location:	P-2	PS-8A	PS-8B	PS-8B	PS-9A	PS-9B	PS-9B	PS-10A	PS-10B	PS-11A	PS-11B	PS-12A
Control Cont	-												
Comple Symple													
Columnation													
Comment Comm		(2- 4)):	(0-2/)((0-2)):		(0-2)] ((0-2/):	(2-4)):	(0-2)] ((0-2/):	(0-2)):	(0-2)):	(0-2)]:
1.5 1.5					Duplicate								
1.2 Secontament (Fily place (Bit possible) 1.2 Secontament (Fily place) 1.2 Secontament													
1.2 Declarocomenies mark													
1,2 Entimote programme mg/kg													
3.7-Cell Conference													
1.3 Distributions with second (MEC)													
Part	1,3-Dichlorobenzene mg/kg												
Abelen/2 perstance (Methyl looburyl lettorn) (Millis) mg/kg	1,4-Dichlorobenzene mg/kg												
Advance	2-Butanone (Methyl ethyl ketone) (MEK) mg/kg												
Actorie mg/kg													
Serverse 1998 1													
Strometishare mg/kg													
Strong-form mg/kg													
Second promethane Nethyl browned mg/kg	9 9												
Carbon testadoride	5. 5												
Carbon tetrachloride													
Chlorocherane													
Chlorotethane mg/kg	g. g												
Chioroptem Trichiforonethane													
Chloromethane (Methyl chloride) mg/kg	g. g												
cis.1.2.Dichloropethene													
Cis.1.3.0ichloropropene													
Cychokeane													
Dichordifluoromethane (CFC-12) mg/kg													
Etytophenee													
Sopropy benzene													
Methyl acetate	· · · · · · · · · · · · · · · · · · ·												
Methyl cyclohexane mg/kg -													
Methyltent butyl ether (MTBE) mg/kg													
Methylene chloride mg/kg													
Styrene													
Tetrachloroethene mg/kg													
Toluene mg/kg													
trans-1,2-Dichloroethene													
trans-1,3-Dichloropropene mg/kg	J. 5												
Trichloroethene mg/kg	,												
Trichlorofluoromethane (CFC-11) mg/kg													
Trifluorotrichloroethane (Freon 113) mg/kg <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>													
Xylenes (total) mg/kg -	Trifluorotrichloroethane (Freon 113) mg/kg												
General Chemistry Cyanide (amenable) mg/kg <td< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>													
Cyanide (amenable) mg/kg	Xylenes (total) mg/kg												
Cyanide (total) mg/kg	General Chemistry												
Cyanide (total) mg/kg	Cyanide (amenable) mg/kg												
Total organic carbon (TOC)													
				78.7	74.6			79.5		80.1			87.0

Notes

- U Not detected at the associated reporting limit.
- J Estimated concentration.
- UJ Not detected; associated reporting limit is estimated.

Area Sample Location: Sample Identification: Sample Date: Sample Depth: Sample Type:		GMPT_EastPlantArea PS-12B S-032105-JC-1008 3/21/2005 (0-2) ft	A004 TMW-X247Y261 Abandoned S-021005-JC-936 2/10/2005 (0-2) ft	A004 TMW-X247Y261 Abandoned S-021005-JC-937 2/10/2005 (4-6) ft	A004 TMW-X247Y261 Abandoned S-021005-JC-938 2/10/2005 (9-11) ft	A004 TMW-X247Y261 Abandoned S-021005-JC-939 2/10/2005 (14-16) ft	A004 TMW-X247Y261 Abandoned S-021005-JC-940 2/10/2005 (19-21) ft	A004 TMW-X247Y261 Abandoned S-021005-JC-941 2/10/2005 (24-26) ft
PCBs	Units							
7655								
Aroclor-1016 (PCB-1016)	mg/kg		0.04 U	21 U	21 U	20 U	0.04 U	0.043 U
Aroclor-1221 (PCB-1221)	mg/kg		0.04 U	21 U	21 U	20 U	0.04 U	0.043 U
Aroclor-1232 (PCB-1232)	mg/kg		0.04 U	21 U	21 U	20 U	0.04 U	0.043 U
Aroclor-1242 (PCB-1242)	mg/kg		0.057	100	94	120	0.092	0.043 U
Aroclor-1248 (PCB-1248)	mg/kg		0.04 U	21 U	21 U	20 U	0.04 U	0.043 U
Aroclor-1254 (PCB-1254)	mg/kg		0.04 U	21 U	21 U	20 U	0.04 U	0.043 U
Aroclor-1260 (PCB-1260)	mg/kg		0.04 U	21 U	21 U	20 U	0.04 U	0.043 U
Total PCBs	mg/kg	0.008 J	0.057	100	94	120	0.092	ND
Metals								
Aluminum	mg/kg							
Antimony	mg/kg							
Arsenic	mg/kg							
Barium	mg/kg							
Beryllium	mg/kg							
Cadmium	mg/kg							
Chromium	mg/kg							
Cobalt	mg/kg							
Copper	mg/kg							
Iron	mg/kg							
Lead	mg/kg							
Manganese	mg/kg							
Mercury	mg/kg							
Nickel	mg/kg							
Selenium	mg/kg							
Silver	mg/kg							
Thallium	mg/kg							
Vanadium	mg/kg							
Zinc	mg/kg							
Semi-Volatile Organic Compounds (SVOCs)								
2,2'-Oxybis(1-chloropropane) (bis(2-Chloroisopropyl) ether)	mg/kg							
2,4,5-Trichlorophenol	mg/kg							
2,4,6-Trichlorophenol	mg/kg							
2,4-Dichlorophenol	mg/kg							
2,4-Dimethylphenol	mg/kg							
2,4-Dinitrophenol	mg/kg							
2,4-Dinitrotoluene	mg/kg							
2,6-Dinitrotoluene	mg/kg							
2-Chloronaphthalene	mg/kg							
2-Chlorophenol	mg/kg							
2-Methylnaphthalene	mg/kg							
2-Methylphenol	mg/kg							
2-Nitroaniline 2-Nitrophenol	mg/kg						 	
3,3'-Dichlorobenzidine	mg/kg mg/kg	 	 			 		
3-Nitroaniline	mg/kg							
4,6-Dinitro-2-methylphenol	mg/kg							
• •	5. 0							

Sample Location: Sample Identification: Sample Date: Sample Depth:		PS-12B S-032105-JC-1008 3/21/2005 (0-2) ft	TMW-X247Y261 Abandoned S-021005-JC-936 2/10/2005 (0-2) ft	TMW-X247Y261 Abandoned S-021005-JC-937 2/10/2005 (4-6) ft	TMW-X247Y261 Abandoned S-021005-JC-938 2/10/2005 (9-11) ft	TMW-X247Y261 Abandoned S-021005-JC-939 2/10/2005 (14-16) ft	TMW-X247Y261 Abandoned S-021005-JC-940 2/10/2005 (19-21) ft	TMW-X247Y261 Abandoned S-021005-JC-941 2/10/2005 (24-26) ft
Sample Type:								
	Units							
4-Bromophenyl phenyl ether	mg/kg							
4-Chloro-3-methylphenol	mg/kg							
4-Chloroaniline	mg/kg							
4-Chlorophenyl phenyl ether	mg/kg							
4-Methylphenol	mg/kg							
4-Nitroaniline	mg/kg							
4-Nitrophenol	mg/kg							
Acenaphthene	mg/kg							
Acenaphthylene	mg/kg							
Acetophenone	mg/kg							
Anthracene	mg/kg							
Atrazine	mg/kg							
Benzaldehyde	mg/kg							
Benzo(a)anthracene	mg/kg							
Benzo(a)pyrene	mg/kg							
Benzo(b)fluoranthene	mg/kg							
Benzo(g,h,i)perylene	mg/kg							
Benzo(k)fluoranthene	mg/kg							
								
Biphenyl (1,1-Biphenyl)	mg/kg							
bis(2-Chloroethoxy)methane	mg/kg							
bis(2-Chloroethyl)ether	mg/kg							
bis(2-Ethylhexyl)phthalate (DEHP)	mg/kg							
Butyl benzylphthalate (BBP)	mg/kg							
Caprolactam	mg/kg							
Carbazole	mg/kg							
Chrysene	mg/kg							
Dibenz(a,h)anthracene	mg/kg							
Dibenzofuran	mg/kg							
Diethyl phthalate	mg/kg							
Dimethyl phthalate	mg/kg							
Di-n-butylphthalate (DBP)	mg/kg							
Di-n-octyl phthalate (DnOP)	mg/kg							
Fluoranthene	mg/kg							
Fluorene	mg/kg							
Hexachlorobenzene	mg/kg							
Hexachlorobutadiene	mg/kg							
Hexachlorocyclopentadiene	mg/kg							
Hexachloroethane	mg/kg							
Indeno(1,2,3-cd)pyrene								
Isophorone	mg/kg mg/kg		 		 	 	 	
Naphthalene	mg/kg	 	 	 	 		 	
Nitrobenzene		 					 	
	mg/kg							
N-Nitrosodi-n-propylamine	mg/kg							
N-Nitrosodiphenylamine	mg/kg							
Pentachlorophenol	mg/kg							
Phenanthrene	mg/kg							
Phenol	mg/kg							
Pyrene	mg/kg							
Volatile Organic Compounds (VOCs)								
1 1 1 Trichloroothana	m = /1.=							
1,1,1-Trichloroethane	mg/kg							
1,1,2,2-Tetrachloroethane	mg/kg							
1,1,2-Trichloroethane	mg/kg							
1,1-Dichloroethane	mg/kg							
1,1-Dichloroethene	mg/kg							
1,2,4-Trichlorobenzene	mg/kg							

Sample Location: Sample Identification: Sample Date: Sample Depth: Sample Type:		PS-12B S-032105-JC-1008 3/21/2005 (0-2) ft	TMW-X247Y261 Abandoned S-021005-JC-936 2/10/2005 (0-2) ft	TMW-X247Y261 Abandoned S-021005-JC-937 2/10/2005 (4-6) ft	TMW-X247Y261 Abandoned S-021005-JC-938 2/10/2005 (9-11) ft	TMW-X247Y261 Abandoned S-021005-JC-939 2/10/2005 (14-16) ft	TMW-X247Y261 Abandoned S-021005-JC-940 2/10/2005 (19-21) ft	TMW-X247Y261 Abandoned S-021005-JC-941 2/10/2005 (24-26) ft
Sumple Type.	Units							
1,2-Dibromo-3-chloropropane (DBCP)	mg/kg							
1,2-Dibromoethane (Ethylene dibromide)	mg/kg							
1,2-Dichlorobenzene	mg/kg							
1,2-Dichloroethane	mg/kg							
1,2-Dichloropropane	mg/kg							
1,3-Dichlorobenzene	mg/kg							
1,4-Dichlorobenzene	mg/kg							
2-Butanone (Methyl ethyl ketone) (MEK)	mg/kg							
2-Hexanone	mg/kg							
4-Methyl-2-pentanone (Methyl isobutyl ketone) (MIBK)	mg/kg							
Acetone	mg/kg							
Benzene	mg/kg							
Bromodichloromethane	mg/kg							
Bromoform	mg/kg							
Bromomethane (Methyl bromide)	mg/kg							
Carbon disulfide	mg/kg							
Carbon tetrachloride	mg/kg							
Chlorobenzene	mg/kg							
Chloroethane	mg/kg							
Chloroform (Trichloromethane)	mg/kg							
Chloromethane (Methyl chloride)	mg/kg							
cis-1,2-Dichloroethene	mg/kg							
cis-1,3-Dichloropropene	mg/kg							
Cyclohexane	mg/kg							
Dibromochloromethane Dichlorodifluoromethane (CFC-12)	mg/kg			 	 		 	
Ethylbenzene	mg/kg		 	 				
Isopropyl benzene	mg/kg mg/kg	 		-				
Methyl acetate	mg/kg			 		 	 	
Methyl cyclohexane	mg/kg							
Methyl tert butyl ether (MTBE)	mg/kg							
Methylene chloride	mg/kg							
Styrene	mg/kg							
Tetrachloroethene	mg/kg							
Toluene	mg/kg							
trans-1,2-Dichloroethene	mg/kg							
trans-1,3-Dichloropropene	mg/kg							
Trichloroethene	mg/kg							
Trichlorofluoromethane (CFC-11)	mg/kg							
Trifluorotrichloroethane (Freon 113)	mg/kg							
Vinyl chloride	mg/kg							
Xylenes (total)	mg/kg							
General Chemistry								
Cyanide (amenable)	mg/kg							
Cyanide (total)	mg/kg							
Total organic carbon (TOC)	mg/kg							
Total solids	%	79.8	82.9	80.3	78.8	82.2	82.8	77.0

Notes

U - Not detected at the associated reporting limit.

J - Estimated concentration.

UJ - Not detected; associated reporting limit is estimated.

Area Sample Location: Sample Identification: Sample Date:		A007_EastPlantArea CH-22 EB-040507-CL-001 4/5/2007	A007_EastPlantArea CH-22 EB-052207-CL-004 5/22/2007	A007_EastPlantArea CH-22 GW-052207-CL-079 5/22/2007	A007_EastPlantArea CH-22 TB-052207-CL-001 5/22/2007	A007_EastPlantArea CH-25 Abandoned EB-031207-PG-001 3/12/2007	A007_EastPlantArea CH-25 Abandoned GW-031207-PG-049 3/12/2007	A007_EastPlantArea CH-25 Abandoned TB-031207-PG-001 3/12/2007	P216GM_P216_east MW-X297Y305D-1 GW-102403-ME-049 10/24/2003	P216GM_P216_east MW-X297Y305D-2 GW-102303-ME-045 10/23/2003	P216GM_P216_east MW-X297Y305D-2 GW-050806-JD-005 5/8/2006	P216GM_P216_east MW-X297Y305D-2 GW-033007-CL-065 3/30/2007	P216GM_P216_east MW-X297Y305D-2 GW-101608-ET-095 10/16/2008	P216GM_P216_east MW-X297Y305D-2 GW-052709-MXB-136 5/27/2009	P216GM_P216_east MW-X297Y305D-2 GW-052709-MXB-137 5/27/2009	P216GM_P216_east MW-X297Y305D-2 GW-080510-CL-157 8/5/2010
Sample Type:	Unito														Duplicate	
PCBs	Units															
Aroclor-1016 (PCB-1016)	ug/L	0.20 U	0.20 U	0.20 U		0.20 U	0.20 U		0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U
Aroclor-1221 (PCB-1221)	ug/L	0.20 U	0.20 U	0.20 U		0.20 U	0.20 U		0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U
Aroclor-1232 (PCB-1232)	ug/L	0.20 U	0.20 U	0.20 U		0.20 U	0.20 U		0.40 U	0.40 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U
Aroclor-1242 (PCB-1242)	ug/L	0.20 U	0.20 U	0.20 U		0.20 U	0.20 U	==	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U
Aroclor-1248 (PCB-1248) Aroclor-1254 (PCB-1254)	ug/L ug/L	0.20 U 0.20 U	0.20 U 0.20 U	0.20 U 0.20 U	 	0.20 U 0.20 U	0.20 U 0.20 U		0.20 U 0.20 U	0.20 U 0.20 U	0.20 U 0.20 U	0.20 U 0.20 U	0.20 U 0.20 U	0.20 U 0.20 U	0.20 U 0.20 U	0.20 U 0.20 U
Aroclor-1260 (PCB-1260)	ug/L	0.20 U	0.20 U	0.20 U		0.20 U	0.20 U		0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U
Total PCBs	ug/L			ND			ND	==	ND	ND	ND	ND	ND	ND	ND	ND
Aroclor-1016 (PCB-1016) (d	ug/L			0.20 U			0.20 U	==	0.20 UJ	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U
Aroclor-1221 (PCB-1221) (d	ug/L			0.20 U		-	0.20 U		0.20 UJ	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U
Aroclor-1232 (PCB-1232) (d	ug/L			0.20 U 0.20 U			0.20 U		0.40 UJ 0.20 UJ	0.40 U	0.20 U	0.20 U	0.20 U 0.20 U	0.20 U 0.20 U	0.20 U	0.20 U
Aroclor-1242 (PCB-1242) (d Aroclor-1248 (PCB-1248) (d	ug/L ug/L			0.20 U			0.20 U 0.20 U		0.20 UJ	0.20 U 0.20 U	0.20 U 0.20 U	0.20 U 0.20 U	0.20 U	0.20 U	0.20 U 0.20 U	0.20 U 0.20 U
Aroclor-1254 (PCB-1254) (d	ug/L			0.20 U			0.20 U		0.20 UJ	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U
Aroclor-1260 (PCB-1260) (d	ug/L			0.20 U		-	0.20 U		0.20 UJ	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U
Total PCBs (dissolved)	ug/L			ND		-	ND		ND	ND	ND	ND	ND	ND	ND	ND
Metals																
Aluminum	ug/L								200 U	200 U						
Aluminum (dissolved)	ug/L								200 U	200 U						
Antimony Antimony (dissolved)	ug/L ug/L								60 U 60 U	60 U 4 J						
Arsenic	ug/L								7.2 J	10 U						
Arsenic (dissolved)	ug/L		==					==	6 J	10 U						
Barium	ug/L								98 J	90 J						
Barium (dissolved)	ug/L								89 J	89 J						
Beryllium	ug/L		==	-		-		==	5 U	5 U						==
Beryllium (dissolved)	ug/L								5 U	5 U						
Cadmium	ug/L								5 U	5 U						
Cadmium (dissolved) Chromium	ug/L ug/L								5 U 1300	5 U 10 U						
Chromium (dissolved)	ug/L								1100	10 U						
Cobalt	ug/L								50 U	50 U						
Cobalt (dissolved)	ug/L								50 U	50 U						
Copper	ug/L								37	25 U						
Copper (dissolved)	ug/L			-		-			15 J	25 U						
Iron Iron (dissolved)	ug/L ug/L	 	 	 	 	 	 	 	940 770	100 U 100 U	 	 	 	 	 	
Lead	ug/L								3 U	3 U						
Lead (dissolved)	ug/L			-		-			3 U	3 U						
Manganese	ug/L								38	17						
Manganese (dissolved) Mercury	ug/L ug/L								31 0.2 U	18 0.2 U						
Mercury (dissolved)	ug/L								0.2 U	0.2 U						
Nickel	ug/L							==	22 J	2.5 J		==				
Nickel (dissolved)	ug/L								18 J	3 J						
Selenium Selenium (dissolved)	ug/L								13 9.8	5 U 5 U						
Silver	ug/L ug/L							 	10 U	10 U						
Silver (dissolved)	ug/L					-			10 U	10 U						
Thallium	ug/L			-		-			1 U	1 U			==			==
Thallium (dissolved) Vanadium	ug/L								1 U 50 U	1 U 50 U						
Vanadium Vanadium (dissolved)	ug/L ug/L						 		50 U	50 U	 			 	 	
Zinc	ug/L			-		-			400	20 U						
Zinc (dissolved)	ug/L								290	20 U		==				

Sample Location: Sample Identification:	EB-	CH-22 040507-CL-001	CH-22 EB-052207-CL-004	CH-22 GW-052207-CL-079	CH-22 TB-052207-CL-001	CH-25 Abandoned EB-031207-PG-001	CH-25 Abandoned GW-031207-PG-049	CH-25 Abandoned TB-031207-PG-001	MW-X297Y305D-1 GW-102403-ME-049	MW-X297Y305D-2 GW-102303-ME-045	MW-X297Y305D-2 GW-050806-JD-005	MW-X297Y305D-2 GW-033007-CL-065	MW-X297Y305D-2 GW-101608-ET-095	MW-X297Y305D-2 GW-052709-MXB-136	MW-X297Y305D-2 GW-052709-MXB-137	MW-X297Y305D-2 GW-080510-CL-157
Sample Date:		4/5/2007	5/22/2007	5/22/2007	5/22/2007	3/12/2007	3/12/2007	3/12/2007	10/24/2003	10/23/2003	5/8/2006	3/30/2007	10/16/2008	5/27/2009	5/27/2009	8/5/2010
Sample Type:	Units														Duplicate	
Semi-Volatile Organic Compo	unds (SVOCs)															
	ug/L								10 U	10 U						
	ug/L ug/L				 				10 U 10 U	10 U 10 U		 		 		
	ug/L								10 U	10 U						
	ug/L								10 U	10 U						
	ug/L ug/L								50 U 10 U	50 U 10 U						
2,6-Dinitrotoluene	ug/L								10 U	10 U						
	ug/L								10 U 10 U	10 U 10 U						
	ug/L ug/L			 				 	10 U	10 U						
2-Methylphenol	ug/L								10 U	10 U						
	ug/L ug/L								50 U 10 U	50 U 10 U						
	ug/L ug/L								50 U	50 U						
3-Nitroaniline	ug/L								50 U	50 U						
4,6-Dinitro-2-methylphenol 4-Bromophenyl phenyl ethe	ug/L ug/L								50 U 10 U	50 U 10 U				==		
4-Chloro-3-methylphenol	ug/L ug/L			==					10 U	10 U						
4-Chloroaniline	ug/L								10 U	10 U						
4-Chlorophenyl phenyl ethe 4-Methylphenol	ug/L ug/L								10 U 10 U	10 U 10 U						
4-Nitroaniline	ug/L							==	50 UJ	50 U						
	ug/L								50 UJ	50 UJ						
	ug/L ug/L								10 U 10 U	10 U 10 U						
Acetophenone	ug/L								10 U	10 U						
Anthracene	ug/L								10 U	10 U						
Atrazine Benzaldehyde	ug/L ug/L		 		 		 		10 U 10 U	10 U 10 U	 		 		 	
•	ug/L								10 U	10 U						
	ug/L								10 U	10 U						
	ug/L ug/L								10 U 10 U	10 U 10 U						
Benzo(k)fluoranthene	ug/L								10 U	10 U						
Biphenyl (1,1-Biphenyl) bis(2-Chloroethoxy)methan	ug/L ug/L								10 U 10 U	10 U 10 U						
bis(2-Chloroethyl)ether	ug/L ug/L								10 U	10 U						
bis(2-Ethylhexyl)phthalate (ug/L								10 U	10 U						
Butyl benzylphthalate (BBP) Caprolactam	ug/L ug/L			==					10 U 10 U	10 U 10 U				==		
•	ug/L ug/L								10 U	10 U						
Chrysene	ug/L								10 U	10 U						
Dibenz(a,h)anthracene Dibenzofuran	ug/L ug/L		 				 		10 U 10 U	10 U 10 U	 		 		 	
Diethyl phthalate	ug/L								16	10 U						
	ug/L							==	10 U	10 U						
	ug/L ug/L						 		0.49 J 10 U	10 U 10 U	 		 		 	
	ug/L								10 U	10 U						
	ug/L								10 U	10 U						
	ug/L ug/L				 	 -			10 U 10 U	10 U 10 U	 	 -	 	 		
	ug/L								50 U	50 U						
	ug/L							==	10 U	10 U						
	ug/L ug/L				 				10 U 10 U	10 U 10 U		 				
Naphthalene	ug/L								10 U	10 U						
	ug/L								10 U 10 U	10 U 10 U						
N-Nitrosodi-n-propylamine N-Nitrosodiphenylamine	ug/L ug/L								10 U	10 U						
Pentachlorophenol	ug/L								10 U	10 U						
	ug/L ug/L				 				10 U 10 U	10 U 10 U		 -			 	 -:
	ug/L ug/L			 					10 U	10 U						
*	-															

Sample Location:		CH-22	CH-22	CH-22	CH-22	CH-25 Abandoned	CH-25 Abandoned	CH-25 Abandoned	MW-X297Y305D-1	MW-X297Y305D-2	MW-X297Y305D-2	MW-X297Y305D-2	MW-X297Y305D-2	MW-X297Y305D-2	MW-X297Y305D-2	MW-X297Y305D-2
Sample Identification:		EB-040507-CL-001	EB-052207-CL-004	GW-052207-CL-079	TB-052207-CL-001	EB-031207-PG-001	GW-031207-PG-049	TB-031207-PG-001	GW-102403-ME-049	GW-102303-ME-045	GW-050806-JD-005	GW-033007-CL-065	GW-101608-ET-095	GW-052709-MXB-136		GW-080510-CL-157
Sample Date:		4/5/2007	5/22/2007	5/22/2007	5/22/2007	3/12/2007	3/12/2007	3/12/2007	10/24/2003	10/23/2003	5/8/2006	3/30/2007	10/16/2008	5/27/2009	5/27/2009	8/5/2010
Sample Type:															Duplicate	
Un Volatile Organic Compounds (VC	nits OCs)															
1,1,1-Trichloroethane ug	g/L								1.0 U	1.0 U						
	g/L								1.0 U	1.0 U						
	g/L		==			==		==	1.0 U	1.0 U						==
	g/L					-			1.0 U	1.0 U						
	g/L					-			1.0 U	1.0 U						
	g/L								1.0 U 2.0 U	1.0 UJ 2.0 U						
	g/L g/L		 		 	 	 	 	1.0 U	1.0 U					 	
, , ,	g/L								1.0 U	1.0 U						
	g/L		==			==		==	1.0 U	1.0 U						==
	g/L					-			1.0 U	1.0 U						
	g/L	==		==	==			==	1.0 U	1.0 U				==		==
	g/L g/I					-			1.0 U 10 U	1.0 U 10 UJ						
	g/L g/L								0.67 J	10 U	 		 			
4-Methyl-2-pentanone (Me ug								==	10 U	10 U						
	g/L				==	-			22	10 UJ						
	g/L					-			1.0 U	1.0 U						
	g/L								1.0 U	1.0 U						
	g/L g/L								1.0 U 1.0 U	1.0 U 1.0 U						
, ,	g/L		 		 		 	 	1.0 U	1.0 U		 			 	
Carbon tetrachloride ug						-		==	1.0 U	1.0 U						
	g/L		1.0 U													
	g/L	==		==	==			==	1.0 U	1.0 U						==
	g/L					-			1.5	1.0 U						
	g/L g/L	 -			 				1.0 U 0.50 U	1.0 U 0.50 U						
	g/L								1.0 U	1.0 U						
	g/L								1.0 U	1.0 U						
	g/L								1.0 U	1.0 U						
	g/L								1.0 U	1.0 U						
	g/L								1.0 U 1.0 U	1.0 U 1.0 U						
	g/L g/L								1.0 U	1.0 U	 		 			
	g/L					-		==	1.0 U	1.0 U						==
	g/L				==	-			5.0 U	5.0 U						
	g/L	==		==	==			==	0.41 J	1.0 U						==
	g/L	==		==	==			==	1.0 U	1.0 U				==		
	g/L g/I					-			1.0 U 0.78 J	1.0 U 1.0 U						
-	g/L g/L								0.76 J 0.50 U	0.50 U						
	g/L								1.0 U	1.0 U						
	g/L								1.0 U	1.0 U						
	g/L							==	1.0 U	1.0 U						==
	g/L a/I	 	 1 0 H	 1.0 U	 1 0 H	 1.0 U	 1.0 U	 1 0 U	1.0 U 1.0 U	1.0 U 1.0 U	 	 	 		 	
	g/L g/L		1.0 U 		1.0 U 			1.0 U 	1.4	1.0 U	 	 	 		 	
General Chemistry	6/ -								2	1.0 0						
	g/L								10 U	10 U						
Cyanide (total) ug	g/L								10 U	10 U						
Field parameters																
	S/cm			0.691		-	0.998		1.396	0.882	0.624	0.73	0.666	0.657	0.657	0.727
	g/L			300			360		1050	1440	620	890	2210	290	290	6600
	m/ft			0.01			0.02				0.01	0.02	0.03	0.02	0.02	0.01
Oxidation reduction potent milli				-126.3 8.7			-84.1 11.61	==	-10.1 6.92	260	68.2	166.6	-24.5 6.72	-99.8 6.94	-99.8 6.94	35.5 6.50
	.u. eg C	 		8.7			11.61 		6.92 	6.84	7.02 	6.88 	6.73	6.94	6.94 	6.59
	eg C			27.03			12.36		14.10	13.88	14.1	14.52	15.22	14.21	14.21	18
	ITU			4.16			4.23		0.31	0	0	0	1.01	0.82	0.82	0.71

Notes

U - Not detected at the associated reporting limit.

J - Estimated concentration.

UJ - Not detected; associated reporting limit is estimated.

Area Sample Location: Sample Identification: Sample Date: Sample Type:		P216GM_P216_east MW-X297Y305D-2 GW-032211-CL-183 3/22/2011	P216GM_P216_east MW-X297Y305D-2 GW-120711-MB-211 12/7/2011	P216GM_P216_east MW-X297Y305D-2 GW-080312-SA-023 8/3/2012	P216GM_P216_east MW-X297Y305D-2 GW-121812-5A-011 12/18/2012	P216GM_P216_east MW-X297Y305D-2 GW-062713-SA-013 6/27/2013	P216GM_P216_east MW-X297Y305D-2 GW-062713-SA-015 6/27/2013 Duplicate	P216GM_P216_east MW-X297Y305D-2 GW-103013-JL-010 10/30/2013	P216GM_P216_east MW-X297Y305D-2 GW-103013-JL-012 10/30/2013 Duplicate	P216GM_P216_east MW-X297Y305D-2 GW-051614-SA-022 5/16/2014	P015 Tributary 3-3 SW-052209-SM-132 5/22/2009	P015 Tributary 3-3 SW-081110-ET-168 8/11/2010	P015 Tributary 3-3 SW-081110-ET-169 8/11/2010 Duplicate	P015 Tributary 3-3 SW-031511-ET-169 3/15/2011	P015 Tributary 3-3 SW-120911-CL-217 12/9/2011	P015 Tributary 3-3 SW-080212-JL-024 8/2/2012
PCBs	Units															
Aroclor-1016 (PCB-1016)	ug/L	0.20 U	0.19 U	0.20 U	0.19 U	0.19 U	0.19 U	0.20 U	0.20 U	0.19 U	0.20 U	0.20 U	0.20 U	0.20 U	0.19 U	0.21 U
Aroclor-1221 (PCB-1221) Aroclor-1232 (PCB-1232)	ug/L ug/L	0.20 U 0.20 U	0.19 U 0.19 U	0.20 U 0.20 U	0.19 U 0.19 U	0.19 U 0.19 U	0.19 U 0.19 U	0.20 U 0.20 U	0.20 U 0.20 U	0.19 U 0.19 U	0.20 U 0.20 U	0.20 U 0.20 U	0.20 U 0.20 U	0.20 U 0.20 U	0.19 U 0.19 U	0.21 U 0.21 U
Aroclor-1242 (PCB-1242)	ug/L	0.20 U	0.19 U	0.20 U	0.19 U	0.19 U	0.19 U	0.20 U	0.20 U	0.19 U	0.20 U	0.20 U	0.20 U	0.20 U	0.11 J	0.13 J
Aroclor-1248 (PCB-1248)	ug/L	0.20 U	0.19 U	0.20 U	0.19 U	0.19 U	0.19 U	0.20 U	0.20 U	0.19 U	0.20 U	0.20 U	0.20 U	0.20 U	0.19 U	0.21 U
Aroclor-1254 (PCB-1254)	ug/L	0.20 U	0.19 U	0.20 U	0.19 U	0.19 U	0.19 U	0.20 U	0.20 U	0.19 U	0.20 U	0.20 U	0.20 U	0.20 U	0.19 U	0.21 U
Aroclor-1260 (PCB-1260) Total PCBs	ug/L ug/L	0.20 U ND	0.19 U ND	0.20 U ND	0.19 U ND	0.19 U ND	0.19 U ND	0.20 U ND	0.20 U ND	0.19 U ND	0.20 U ND	0.20 U ND	0.20 U ND	0.20 U ND	0.19 U 0.11 J	0.21 U 0.13 J
Aroclor-1016 (PCB-1016) (d Aroclor-1221 (PCB-1221) (d	_	0.20 U 0.20 U	0.20 U 0.20 U	0.21 U 0.21 U	0.19 U 0.19 U	0.19 U 0.19 U	0.20 U 0.20 U	0.20 U 0.20 U	0.20 U 0.20 U	0.19 U 0.19 U	0.20 U 0.20 U	0.20 U 0.20 U	0.20 U 0.20 U	0.20 U 0.20 U	0.19 U 0.19 U	0.21 U 0.21 U
Aroclor-1232 (PCB-1232) (d	_	0.20 U	0.20 U	0.21 U	0.19 U	0.19 U	0.20 U	0.20 U	0.20 U	0.19 U	0.20 U	0.20 U	0.20 U	0.20 U	0.19 U	0.21 U
Aroclor-1242 (PCB-1242) (d	_	0.20 U	0.20 U	0.21 U	0.19 U	0.19 U	0.20 U	0.20 U	0.20 U	0.19 U	0.20 U	0.20 U	0.20 U	0.20 U	0.19 U	0.21 U
Aroclor-1248 (PCB-1248) (d	-	0.20 U	0.20 U	0.21 U	0.19 U	0.19 U	0.20 U	0.20 U	0.20 U	0.19 U	0.20 U	0.20 U	0.20 U	0.20 U	0.19 U	0.21 U
Aroclor-1254 (PCB-1254) (d	_	0.20 U	0.20 U	0.21 U	0.19 U	0.19 U	0.20 U	0.20 U 0.20 U	0.20 U	0.19 UJ	0.20 U	0.20 U 0.20 U	0.20 U	0.20 U	0.19 U	0.21 U
Aroclor-1260 (PCB-1260) (d Total PCBs (dissolved)	ug/L ug/L	0.20 U ND	0.20 U ND	0.21 U ND	0.19 U ND	0.19 U ND	0.20 U ND	0.20 O ND	0.20 U ND	0.19 UJ ND	0.20 U ND	0.20 U ND	0.20 U ND	0.20 U ND	0.19 U ND	0.21 U ND
Metals	G,															
Aluminum	ug/L															
Aluminum (dissolved)	ug/L															
Antimony	ug/L															
Antimony (dissolved)	ug/L															
Arsenic Arsenic (dissolved)	ug/L ug/L		 	 	 			 								
Barium	ug/L															
Barium (dissolved)	ug/L	-														
Beryllium	ug/L															
Beryllium (dissolved) Cadmium	ug/L ug/L		 		 			 								
Cadmium (dissolved)	ug/L															
Chromium	ug/L	-														
Chromium (dissolved)	ug/L															
Cobalt Cobalt (dissolved)	ug/L ug/L		 	 	 			 					 			
Copper	ug/L															
Copper (dissolved)	ug/L															
Iron Iron (dissolved)	ug/L ug/L		 	 		 	 	 	 	 	 	 	 	 	 	
Lead	ug/L															
Lead (dissolved)	ug/L	-														
Manganese Manganese (dissolved)	ug/L ug/L		 													
Mercury	ug/L	-														
Mercury (dissolved) Nickel	ug/L															
Nickel (dissolved)	ug/L ug/L															
Selenium	ug/L															
Selenium (dissolved) Silver	ug/L		 					 				 				
Silver (dissolved)	ug/L ug/L							 				 	 			
Thallium	ug/L															
Thallium (dissolved) Vanadium	ug/L ug/L															
Vanadium (dissolved)	ug/L ug/L			 												
Zinc	ug/L	-														-
Zinc (dissolved)	ug/L															

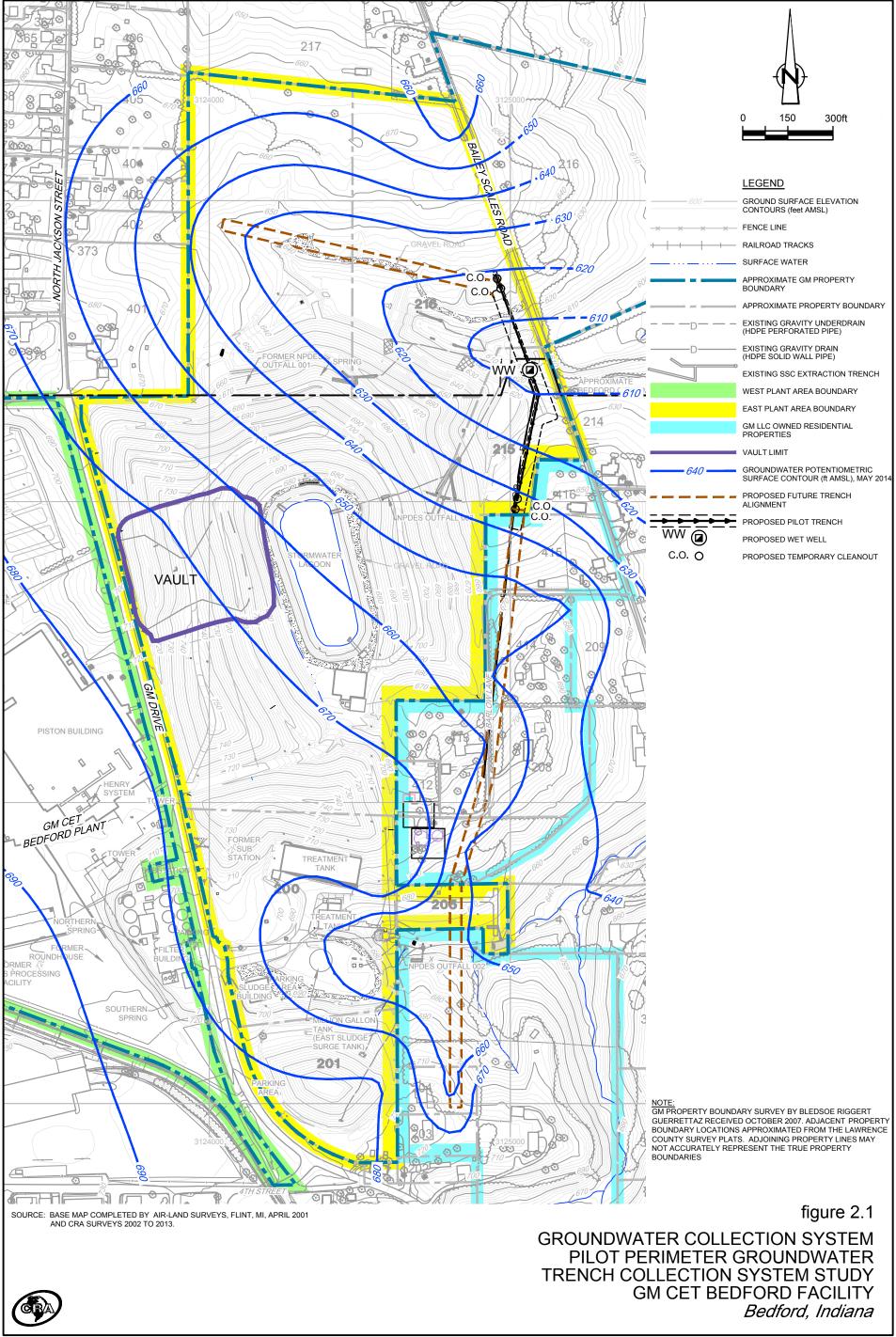
Sample Location: Sample Identification: Sample Date: Sample Type:		MW-X297Y305D-2 GW-032211-CL-183 3/22/2011	MW-X297Y305D-2 GW-120711-MB-211 12/7/2011	MW-X297Y305D-2 GW-080312-SA-023 8/3/2012	MW-X297Y305D-2 GW-121812-SA-011 12/18/2012	MW-X297Y305D-2 GW-062713-SA-013 6/27/2013	MW-X297Y305D-2 GW-062713-SA-015 6/27/2013 Duplicate	MW-X297Y305D-2 GW-103013-JL-010 10/30/2013	MW-X297Y305D-2 GW-103013-JL-012 10/30/2013 Duplicate	MW-X297Y305D-2 GW-051614-SA-022 5/16/2014	Tributary 3-3 SW-052209-SM-132 5/22/2009	Tributary 3-3 SW-081110-ET-168 8/11/2010	Tributary 3-3 SW-081110-ET-169 8/11/2010 Duplicate	Tributary 3-3 SW-031511-ET-169 3/15/2011	Tributary 3-3 SW-120911-CL-217 12/9/2011	Tributary 3-3 SW-080212-JL-024 8/2/2012
зитріє туре.	Units						Бирисите		Бирисите				Бирисите			
Semi-Volatile Organic Comp	oounds (SV															
2,2'-Oxybis(1-chloropropan	ug/L															
2,4,5-Trichlorophenol	ug/L															
2,4,6-Trichlorophenol 2,4-Dichlorophenol	ug/L ug/L															
2,4-Dimethylphenol	ug/L															-
2,4-Dinitrophenol	ug/L															
2,4-Dinitrotoluene 2,6-Dinitrotoluene	ug/L															-
2-Chloronaphthalene	ug/L ug/L															
2-Chlorophenol	ug/L												==	==		-
2-Methylnaphthalene	ug/L															
2-Methylphenol 2-Nitroaniline	ug/L ug/L						 		 			 				
2-Nitrophenol	ug/L															
3,3'-Dichlorobenzidine	ug/L															
3-Nitroaniline 4,6-Dinitro-2-methylphenol	ug/L ug/L				 	 	 	 	 				 		 	
4-Bromophenyl phenyl ethe	ug/L ug/L						 								==	
4-Chloro-3-methylphenol	ug/L															
4-Chloroaniline 4-Chlorophenyl phenyl ethe	ug/L ug/L	-									-					-
4-Methylphenol	ug/L ug/L															
4-Nitroaniline	ug/L															
4-Nitrophenol	ug/L															
Acenaphthene Acenaphthylene	ug/L ug/L															
Acetophenone	ug/L															
Anthracene	ug/L															
Atrazine Benzaldehyde	ug/L															-
Benzo(a)anthracene	ug/L ug/L	 														
Benzo(a)pyrene	ug/L															-
Benzo(b)fluoranthene	ug/L															
Benzo(g,h,i)perylene Benzo(k)fluoranthene	ug/L ug/L						 		 			 				
Biphenyl (1,1-Biphenyl)	ug/L															
bis(2-Chloroethoxy)methan	ug/L															
bis(2-Chloroethyl)ether bis(2-Ethylhexyl)phthalate (ug/L ug/L															
Butyl benzylphthalate (BBP)	ug/L															
Caprolactam	ug/L															
Carbazole	ug/L															
Chrysene Dibenz(a,h)anthracene	ug/L ug/L	==									==		 	 		
Dibenzofuran	ug/L															
Diethyl phthalate	ug/L															
Dimethyl phthalate Di-n-butylphthalate (DBP)	ug/L ug/L					 							 	 		
Di-n-octyl phthalate (DnOP)	ug/L															
Fluoranthene	ug/L															
Fluorene Hexachlorobenzene	ug/L ug/L					 -				 -			 :			
Hexachlorobutadiene	ug/L															
Hexachlorocyclopentadiene	ug/L															
Hexachloroethane Indeno(1,2,3-cd)pyrene	ug/L ug/L		 			 -		; 		 -:			 -:	 		
Isophorone	ug/L ug/L	==									==					
Naphthalene	ug/L															
Nitrobenzene	ug/L															
N-Nitrosodi-n-propylamine N-Nitrosodiphenylamine	ug/L ug/L		 					 				 	 			
Pentachlorophenol	ug/L															
Phenanthrene	ug/L															
Phenol Pyrene	ug/L															
rytette	ug/L															-

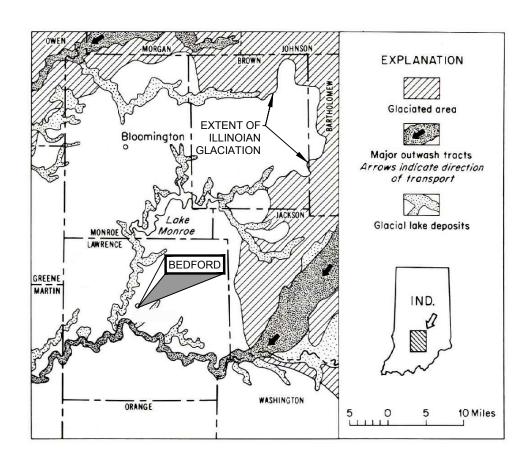
Table 3.2

Sample Location: Sample Identification: Sample Date: Sample Type:		MW-X297Y305D-2 GW-032211-CL-183 3/22/2011	MW-X297Y305D-2 GW-120711-MB-211 12/7/2011	MW-X297Y305D-2 GW-080312-SA-023 8/3/2012	MW-X297Y305D-2 GW-121812-SA-011 12/18/2012	MW-X297Y305D-2 GW-062713-SA-013 6/27/2013	MW-X297Y305D-2 GW-062713-SA-015 6/27/2013 Duplicate	MW-X297Y305D-2 GW-103013-JL-010 10/30/2013	MW-X297Y305D-2 GW-103013-JL-012 10/30/2013 Duplicate	MW-X297Y305D-2 GW-051614-SA-022 5/16/2014	Tributary 3-3 SW-052209-SM-132 5/22/2009	Tributary 3-3 SW-081110-ET-168 8/11/2010	Tributary 3-3 SW-081110-ET-169 8/11/2010 Duplicate	Tributary 3-3 SW-031511-ET-169 3/15/2011	Tributary 3-3 SW-120911-CL-217 12/9/2011	Tributary 3-3 SW-080212-JL-024 8/2/2012
Valatila Ossania Casanassa	Units															
Volatile Organic Compound	as (VOCs)															
1,1,1-Trichloroethane	ug/L															
1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane	ug/L ug/L															
1,1-Dichloroethane	ug/L															
1,1-Dichloroethene	ug/L															
1,2,4-Trichlorobenzene 1,2-Dibromo-3-chloropropa	ug/L ug/L				 	 	 					 		 		
1,2-Dibromoethane (Ethyle	ug/L															
1,2-Dichlorobenzene	ug/L															
1,2-Dichloroethane 1,2-Dichloropropane	ug/L ug/L	 -			 	 	 					 -		 -		
1,3-Dichlorobenzene	ug/L									-						
1,4-Dichlorobenzene	ug/L															
2-Butanone (Methyl ethyl k 2-Hexanone	ug/L ug/L	 			 					-						-
4-Methyl-2-pentanone (Me	ug/L															
Acetone	ug/L															
Benzene Bromodichloromethane	ug/L ug/L	 			 					-						-
Bromoform	ug/L															
Bromomethane (Methyl bro Carbon disulfide	ug/L															
Carbon distillide Carbon tetrachloride	ug/L ug/L															
Chlorobenzene	ug/L															
Chloroethane Chloroform (Trichlorometh	ug/L									-						
Chloromethane (Methyl ch	ug/L ug/L															
cis-1,2-Dichloroethene	ug/L															
cis-1,3-Dichloropropene	ug/L															
Cyclohexane Dibromochloromethane	ug/L ug/L															
Dichlorodifluoromethane (ug/L															
Ethylbenzene Isopropyl benzene	ug/L ug/L									-						
Methyl acetate	ug/L								==							
Methyl cyclohexane	ug/L															
Methyl tert butyl ether (M1 Methylene chloride	ug/L ug/L															
Styrene	ug/L															
Tetrachloroethene	ug/L									-						
Toluene trans-1,2-Dichloroethene	ug/L ug/L															
trans-1,3-Dichloropropene	ug/L															
Trichloroethene	ug/L									-						
Trichlorofluoromethane (CI Trifluorotrichloroethane (Fi	ug/L ug/L		 	 			 	 					 			
Vinyl chloride	ug/L															
Xylenes (total)	ug/L															
General Chemistry																
Cyanide (amenable)	ug/L															
Cyanide (total)	ug/L									-						
Field parameters	mc/e	0.573		0.654	0.000	0.704	0.704	0.612	0.613	0.65	0.544	1.003	1.003			1.003
Conductivity, field Dissolved oxygen (DO), field	mS/cm ug/L	0.572 44400		0.654 1090	0.636 2080	0.794 4350	0.794 4350	0.612 730	0.613 640	0.65 700	0.541 12200	1.092 58100	1.092 58100		 	1.003 5540
Flow rate	gpm/ft	0.02									0 NM					
Oxidation reduction potent	millivolts	-24.3		-101.1	125.8	-135.9	-135.9	-105.1	-99.3	-123.4	307.4	95.1	95.1			16
pH, field Temperature, field	s.u. Deg C	6.75 13.38		6.36 15.37	6.94 13.4	7.15 15.62	7.15 15.62	6.98 15.14	6.96 15.04	6.14 12.91	7.74 	7.35 	7.35 		 	7.79 27.36
Temperature, sample	Deg C								==		22.55	24.49	24.49			
Turbidity, field	NTU	0.82		1.77	1.71	2.17	2.17	3.26	1.24	2.7	12.8	31.6	31.6	80.8		77.6

Notes

U - Not detected at the associated repo J - Estimated concentration. UJ - Not detected; associated reporting


Area Sample Location: Sample Identification: Sample Date: Sample Type:		P015 Tributary 3-3 SW-121912-SA-021 12/19/2012	P015 Tributary 3-3 SW-062813-SA-023 6/28/2013	P015 Tributary 3-3 SW-103013-KC-021 10/30/2013	P015 Tributary 3-3 SW-103013-KC-023 10/30/2013	P015 Tributary 3-3 GW-051614-SA-023 5/16/2014	P015 Tributary 3-3 GW-051614-SA-024 5/16/2014 Duplicate	P416 PARCEL 416 WELL GW-053102-327012-JW-001 5/31/2002	P416 PARCEL 416 WELL GW-053102-327012-JW-002 5/31/2002 Duplicate	P416 PARCEL 416 WELL GW-053102-327012-JW-003 5/31/2002 Replicate
PCBs	Units									
Aroclor-1016 (PCB-1016)	ug/L	0.19 U	0.19 U	0.19 UJ	0.19 U	0.19 U	0.19 U	0.08 UJ	0.08 UJ	0.20 UJ
Aroclor-1221 (PCB-1221)	ug/L	0.19 U	0.19 U	0.19 UJ	0.19 U	0.19 U	0.19 U	0.10 UJ	0.10 UJ	0.20 UJ
Aroclor-1232 (PCB-1232)	ug/L	0.19 U	0.19 U	0.19 UJ	0.19 U	0.19 U	0.19 U	0.10 UJ	0.10 UJ	0.40 UJ
Aroclor-1242 (PCB-1242)	ug/L	0.19 U	0.19 U	0.19 UJ	0.19 U	0.19 U	0.067 J	0.10 UJ	0.10 UJ	0.20 UJ
Aroclor-1248 (PCB-1248)	ug/L	0.19 U	0.19 U	0.19 UJ	0.19 U	0.19 U	0.19 U	0.10 UJ	0.10 UJ	0.20 UJ
Aroclor-1254 (PCB-1254)	ug/L	0.19 U	0.19 U	0.19 UJ	0.084 J	0.19 U	0.19 U	0.10 UJ	0.10 UJ	0.20 UJ
Aroclor-1260 (PCB-1260)	ug/L	0.19 U	0.19 U	0.19 UJ	0.19 U	0.19 U	0.19 U	0.10 UJ	0.10 UJ	0.20 UJ
Total PCBs	ug/L	ND	ND	ND	0.084 J	ND	0.067 J	ND	ND	ND
Aroclor-1016 (PCB-1016) (d	ug/L	0.19 U	0.19 U	0.19 U	0.19 U	0.19 U	0.19 U	0.08 UJ	0.08 UJ	0.20 U
Aroclor-1221 (PCB-1221) (d	ug/L	0.19 U	0.19 U	0.19 U	0.19 U	0.19 U	0.19 U	0.10 UJ	0.10 UJ	0.20 U
Aroclor-1232 (PCB-1232) (d	ug/L	0.19 U	0.19 U	0.19 U	0.19 U	0.19 U	0.19 U	0.10 UJ	0.10 UJ	0.40 U
Aroclor-1242 (PCB-1242) (d	ug/L	0.19 U	0.19 U	0.19 U	0.19 U	0.19 U	0.19 U	0.10 UJ	0.10 UJ	0.20 U
Aroclor-1248 (PCB-1248) (d	ug/L	0.19 U	0.19 U	0.19 U	0.19 U	0.19 U	0.19 U	0.10 UJ	0.10 UJ	0.20 U
Aroclor-1254 (PCB-1254) (d	ug/L	0.19 U	0.19 U	0.19 U	0.19 U	0.19 UJ	0.19 UJ	0.10 UJ	0.10 UJ	0.20 U
Aroclor-1260 (PCB-1260) (d	ug/L	0.19 U	0.19 U	0.19 U	0.19 U	0.19 UJ	0.19 UJ	0.10 UJ	0.10 UJ	0.20 U
Total PCBs (dissolved)	ug/L	ND	ND	ND	ND	ND	ND	ND	ND	ND
Metals										
Aluminum	ug/L						==			
Aluminum (dissolved)	ug/L									
Antimony	ug/L									
Antimony (dissolved)	ug/L									
Arsenic	ug/L	-								
Arsenic (dissolved)	ug/L	-								
Barium	ug/L									
Barium (dissolved)	ug/L									
Beryllium	ug/L	-								
Beryllium (dissolved)	ug/L									
Cadmium	ug/L									 -
Chromium (dissolved)	ug/L								 -	 -
Chromium Chromium (dissolved)	ug/L ug/L		 						 	
Cobalt	ug/L		 		 				 	
Cobalt (dissolved)	ug/L									
Copper	ug/L									
Copper (dissolved)	ug/L									
Iron	ug/L	-								
Iron (dissolved)	ug/L	-								
Lead	ug/L									
Lead (dissolved)	ug/L	-		==			==			
Manganese Manganese (dissolved)	ug/L ug/L	_							 	
Mercury	ug/L									
Mercury (dissolved)	ug/L									
Nickel	ug/L	=								
Nickel (dissolved)	ug/L									
Selenium	ug/L									
Selenium (dissolved)	ug/L			==			==	==	==	
Silver (dissolved)	ug/L									
Silver (dissolved) Thallium	ug/L ug/L		 -	 	 		 	 	 	
Thallium (dissolved)	ug/L								 	
Vanadium	ug/L									
Vanadium (dissolved)	ug/L	-								
Zinc	ug/L									
Zinc (dissolved)	ug/L									


Sample Location: Sample Identification: Sample Date: Sample Type:		Tributary 3-3 SW-121912-SA-021 12/19/2012	Tributary 3-3 SW-062813-SA-023 6/28/2013	Tributary 3-3 SW-103013-KC-021 10/30/2013	Tributary 3-3 SW-103013-KC-023 10/30/2013	Tributary 3-3 GW-051614-SA-023 5/16/2014	Tributary 3-3 GW-051614-SA-024 5/16/2014 Duplicate	PARCEL 416 WELL GW-053102-327012-JW-001 5/31/2002	PARCEL 416 WELL GW-053102-327012-JW-002 5/31/2002 Duplicate	PARCEL 416 WELL GW-053102-327012-JW-003 5/31/2002 Replicate
Semi-Volatile Organic Comp	Units ounds (SV)									
2,2'-Oxybis(1-chloropropan	ug/L			==	==	==	==			
2,4,5-Trichlorophenol	ug/L									
2,4,6-Trichlorophenol	ug/L		 			 		 		
2,4-Dichlorophenol 2,4-Dimethylphenol	ug/L ug/L									
2,4-Dinitrophenol	ug/L									
2,4-Dinitrotoluene	ug/L									
2,6-Dinitrotoluene	ug/L									
2-Chloronaphthalene	ug/L									
2-Chlorophenol	ug/L									
2-Methylnaphthalene	ug/L									
2-Methylphenol	ug/L									
2-Nitroaniline	ug/L									
2-Nitrophenol	ug/L									
3,3'-Dichlorobenzidine	ug/L			==			==			
3-Nitroaniline	ug/L							==		
4,6-Dinitro-2-methylphenol	ug/L									
4-Bromophenyl phenyl ethe	ug/L									
4-Chloro-3-methylphenol	ug/L					==				
4-Chloroaniline 4-Chlorophenyl phenyl ethe	ug/L ug/L					 				
4-Methylphenol	ug/L ug/L								 	
4-Nitroaniline	ug/L									
4-Nitrophenol	ug/L							==		
Acenaphthene	ug/L									
Acenaphthylene	ug/L									
Acetophenone	ug/L									
Anthracene	ug/L									
Atrazine	ug/L									
Benzaldehyde	ug/L									
Benzo(a)anthracene	ug/L									
Benzo(a)pyrene	ug/L									
Benzo(b)fluoranthene	ug/L									
Benzo(g,h,i)perylene Benzo(k)fluoranthene	ug/L ug/L					 			 -	
Biphenyl (1,1-Biphenyl)	ug/L ug/L					 	 		 	
bis(2-Chloroethoxy)methan	ug/L									
bis(2-Chloroethyl)ether	ug/L									
bis(2-Ethylhexyl)phthalate (ug/L									
Butyl benzylphthalate (BBP)	ug/L									
Caprolactam	ug/L									
Carbazole	ug/L									
Chrysene	ug/L			==	==	==	==	==		==
Dibenz(a,h)anthracene	ug/L							==		
Dibenzofuran	ug/L			==			==			
Diethyl phthalate Dimethyl phthalate	ug/L									
Di-n-butylphthalate (DBP)	ug/L ug/L		 							
Di-n-octyl phthalate (DnOP)	ug/L									
Fluoranthene	ug/L									
Fluorene	ug/L									
Hexachlorobenzene	ug/L									
Hexachlorobutadiene	ug/L									
Hexachlorocyclopentadiene	ug/L									
Hexachloroethane	ug/L									
Indeno(1,2,3-cd)pyrene	ug/L			==			==			
Isophorone	ug/L									
Naphthalene	ug/L									
Nitrobenzene	ug/L			==			==	 		==
N-Nitrosodi-n-propylamine N-Nitrosodiphenylamine	ug/L ug/L		 -					 	 	
Pentachlorophenol	ug/L ug/L								 	
Phenanthrene	ug/L ug/L			 			 			
Phenol	ug/L									
Pyrene	ug/L									

Sample Location: Sample Identification: Sample Date: Sample Type:		Tributary 3-3 SW-121912-SA-021 12/19/2012	Tributary 3-3 SW-062813-SA-023 6/28/2013	Tributary 3-3 SW-103013-KC-021 10/30/2013	Tributary 3-3 SW-103013-KC-023 10/30/2013	Tributary 3-3 GW-051614-SA-023 5/16/2014	Tributary 3-3 GW-051614-SA-024 5/16/2014 Duplicate	PARCEL 416 WELL GW-053102-327012-JW-001 5/31/2002	PARCEL 416 WELL GW-053102-327012-JW-002 5/31/2002 Duplicate	PARCEL 416 WELL GW-053102-327012-JW-003 5/31/2002 Replicate
Volatile Organic Compounds	Units s (VOCs)									
1 1 1 Trichloroothana	ua/I									
1,1,1-Trichloroethane	ug/L					 		 		
1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane	ug/L ug/L						 			
1,1-Dichloroethane	ug/L ug/L				 		 	 	==	
1,1-Dichloroethene	ug/L									
1,2,4-Trichlorobenzene	ug/L									
1,2-Dibromo-3-chloropropa	ug/L									
1,2-Dibromoethane (Ethyle	ug/L									
1,2-Dichlorobenzene	ug/L									
1,2-Dichloroethane	ug/L									
1,2-Dichloropropane	ug/L									
1,3-Dichlorobenzene	ug/L									
1,4-Dichlorobenzene	ug/L									
2-Butanone (Methyl ethyl k	ug/L									
2-Hexanone	ug/L									
4-Methyl-2-pentanone (Me	ug/L									
Acetone	ug/L									
Benzene	ug/L									
Bromodichloromethane	ug/L									
Bromoform	ug/L									
Bromomethane (Methyl br	ug/L								==	==
Carbon disulfide	ug/L									
Carbon tetrachloride	ug/L									
Chlorobenzene	ug/L									
Chloroethane	ug/L		==							
Chloroform (Trichlorometh	ug/L		==							
Chloromethane (Methyl ch	ug/L									
cis-1,2-Dichloroethene	ug/L						==			
cis-1,3-Dichloropropene	ug/L						 	 		
Cyclohexane	ug/L							 		
Dibromochloromethane Dichlorodifluoromethane (ug/L ug/L									
Ethylbenzene	ug/L ug/L		 				 	 	 	
Isopropyl benzene	ug/L									
Methyl acetate	ug/L									
Methyl cyclohexane	ug/L									==
Methyl tert butyl ether (M1	ug/L									
Methylene chloride	ug/L									
Styrene	ug/L									
Tetrachloroethene	ug/L									
Toluene	ug/L									
trans-1,2-Dichloroethene	ug/L									
trans-1,3-Dichloropropene	ug/L									
Trichloroethene	ug/L									
Trichlorofluoromethane (CI	ug/L									
Trifluorotrichloroethane (Fi	ug/L									
Vinyl chloride	ug/L									
Xylenes (total)	ug/L									
General Chemistry										
Cyanide (amenable)	ug/L									
Cyanide (total)	ug/L									
Field parameters										
Conductivity, field	mS/cm	0.339	0.655	0.629	0.627	0.004	0.004	0.441		
Dissolved oxygen (DO), field	ug/L	10920	15330	11720	10680	7040	7040	7650		
Flow rate	gpm/ft									
	millivolts	263.1	51.9	58.4	57.9	-58.2	-58.2			
pH, field	s.u.	6.85	7.53	7.9	7.91	7.37	7.37	7.25		
Temperature, field	Deg C	7.22	21.69	12.66	12.54	17.53	17.53			
Temperature, sample	Deg C							15.16		
Turbidity, field	NTU	6.71	21.5	26.1	16.2	4.39	4.39	155.00		
••	-		-							

Notes

U - Not detected at the associated repo J - Estimated concentration. UJ - Not detected; associated reporting

figure 2.2

GLACIAL FEATURES OF SOUTH-CENTRAL INDIANA
PILOT PERIMETER GROUNDWATER
TRENCH COLLECTION SYSTEM STUDY
GM CET BEDFORD FACILITY
Bedford, Indiana

SOURCE: GRAY, 1974

figure 2.3

BEDROCK STRUCTURAL FEATURES OF INDIANA
PILOT PERIMETER GROUNDWATER
TRENCH COLLECTION SYSTEM STUDY
GM CET BEDFORD FACILITY
Bedford, Indiana

SOURCE: RUPP, 1991

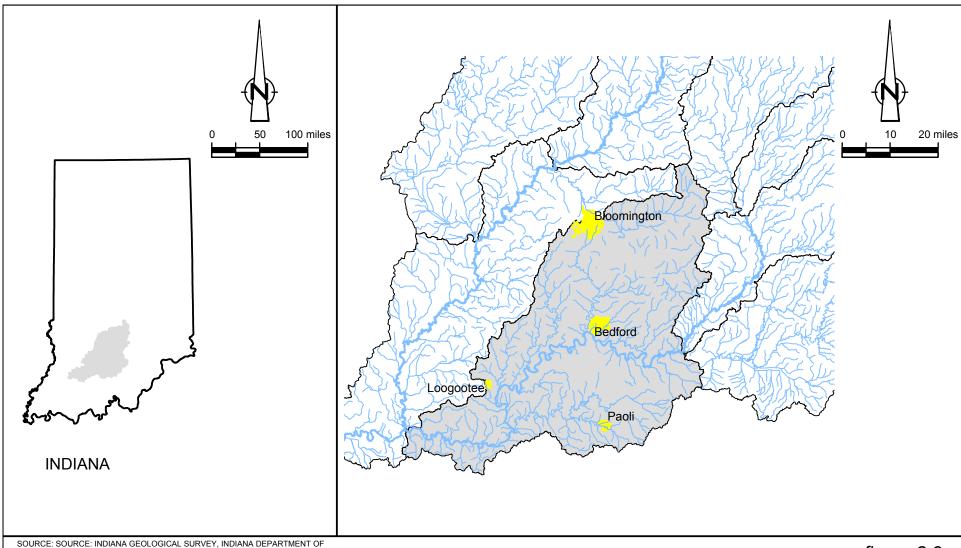
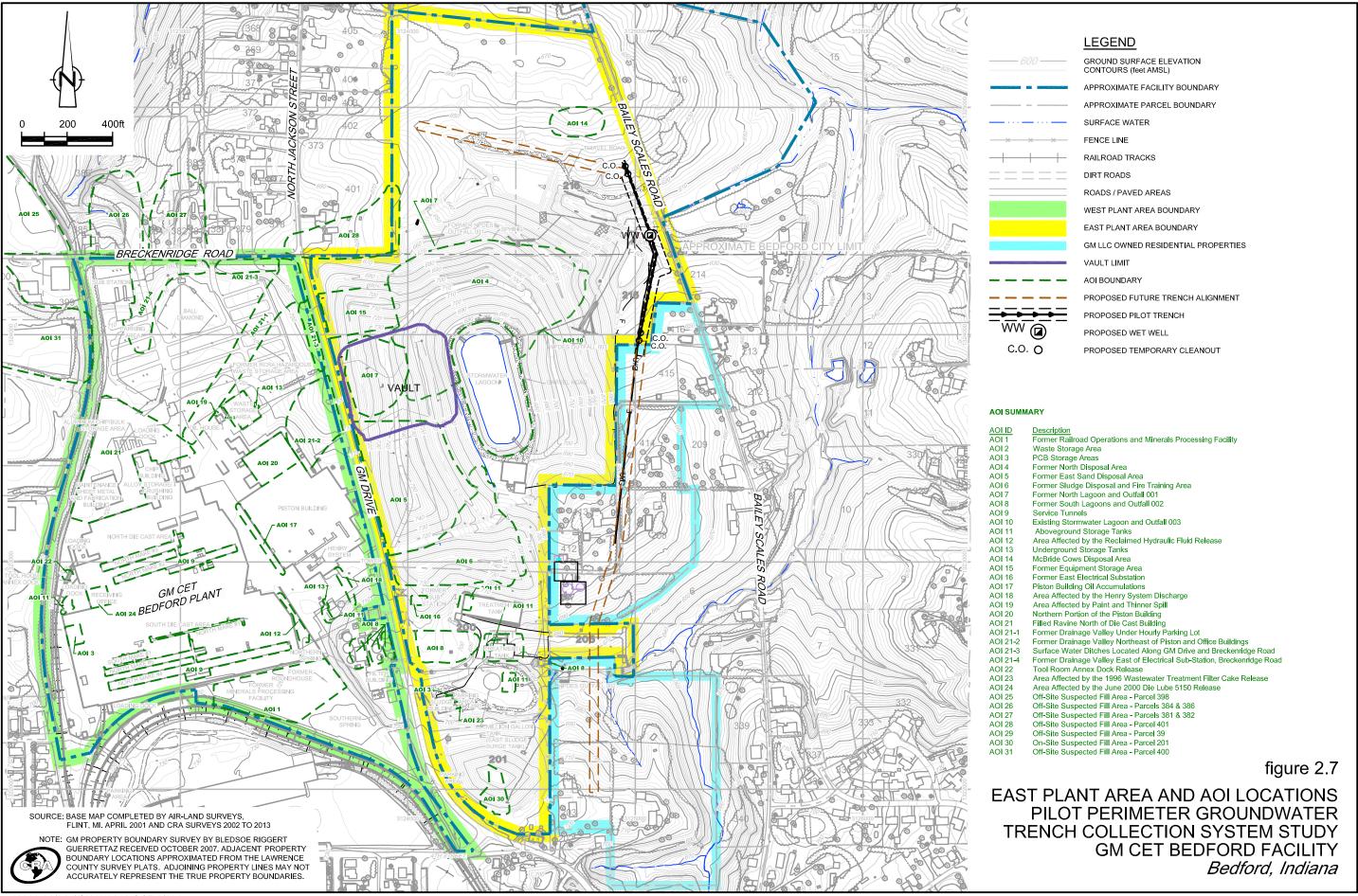
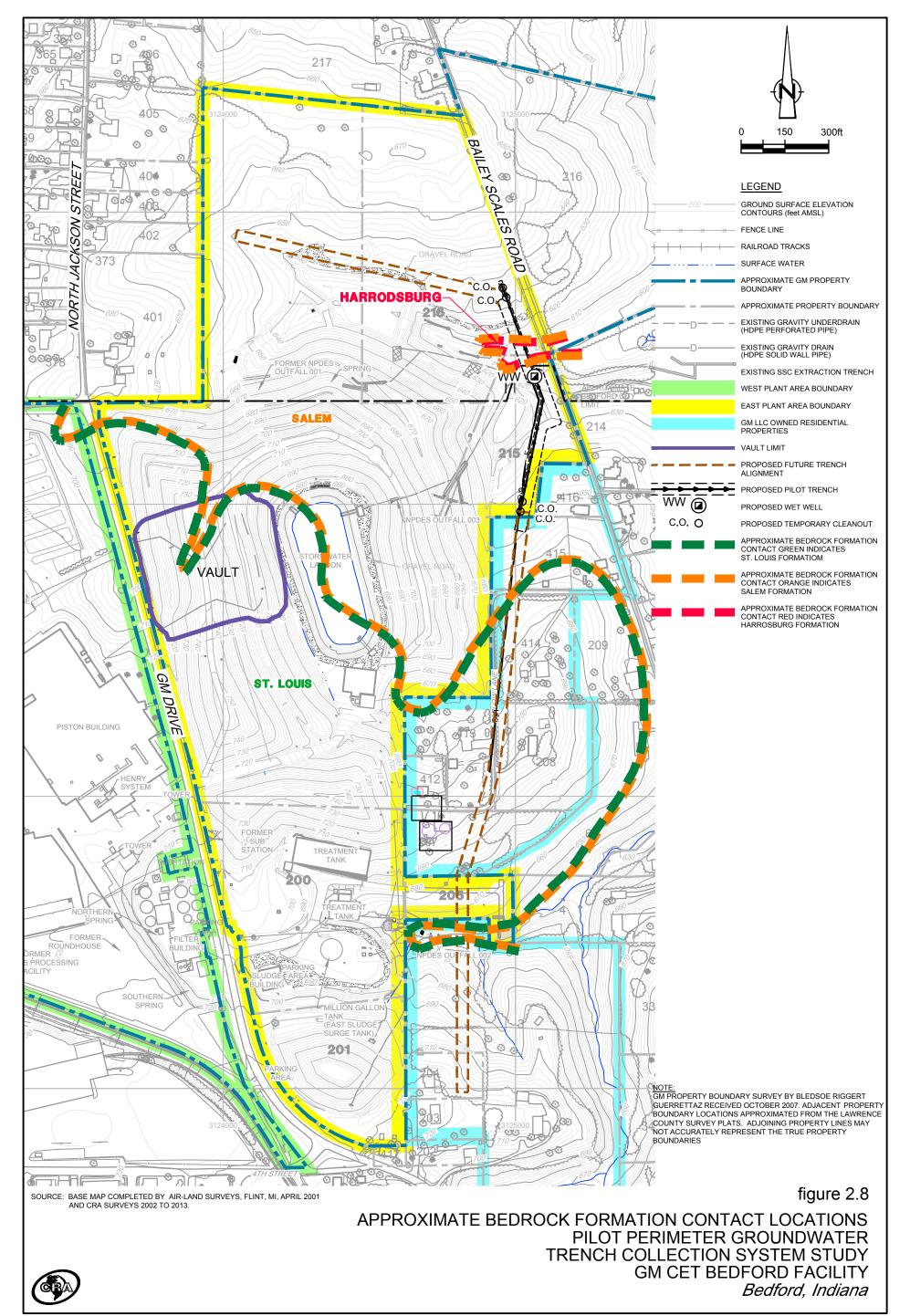

UN	NE	*ESS	.00Y	36. T	ROCK UNIT			ME	*ESS	ОВУ	5	ROC	K UNIT		
PERIOD	ЕРОСН	THICKNESS (FT)*	ПТНОГОВУ	SIGNIFICANT MEMBER	FORMATION	GROUP	PERIOD	ЕРОСН	THICKNESS (FT)*	LITHOLOGY	SIGNIFICANT MEMBER	FORM	MATION	GRO	DUP
_	AN			-Merom Ss.	Mattoon		_	SEN.				New Albany	Elisworth Sh.	1	
z	MISSOURIAN	,,,,		Livingston Ls.	Bond	182	Z	SE				Sh.	Antrim Sh.		
⋖	ISSC	170 to	-	Carthage Ls.	Patoka	McLeansboro	-	¥.	20		E DIE	North Vernon Ls.	Traverse		
_	Σ	770		>West Franklin			z	ERIAN	to 250			Jeffersonville	Detroit River	Musca	tatuc
z	z			Ls.	Shelburn		0	-	272	5/2/2	>Geneva Dol.	LS.	Denoit Hiver		_
4	SIA			Danville Coal Hymera Coal	Dugger		>	RA	0		SW. IND.	Clear Creek C	thert	Ne	w
>	ш	290		Alum Cave Ls.	Dugger		٥	ULSTERIAN	to 750	**************************************	ONLY	Grassy Knob	Backbone Ls.	Ham	
_	N - 0	to 460		- Springfield Coal - Survant Coal	Petersburg	Carbondale		E	7.50	200	لميسيا	Chert			_
>	Σ			Colchester	Linton			z		100	Kenneth si				
တ	E S			Coal Seelyville Coal			z	CAYUGAN	50	4	Kokowo G.		Bailey Ls.		
z	0			Perth Ls.	Staunton		⋖	Š	770	700	≣ ر ا	Waba	sn		
z	AN	160	-2=	-Minshall Coal		Raccoon	-			77	Mississinewa Sh.	na Gr	Mocc. Springs		
ш	ATOKAN	to 980		Lower Block	Brazil	Creek	Œ			7417	7	Salina	ouisville	Bainb	ridge
	AN.		-	Coal Lead Creek			>	NIAGARAN		1,164		Pleasant	Ls.		
т.	MOR- ROWAN		~~~	Ls.	Mansfield		_	AGA	50	/- [-/-]	Limberlost	1	Waldron St. Clair Sh. Ls.		
				SW. IND.	Grove Ch. Sh.		_	Z	to 350	3777	Dol.	Salamonie	La Tec		
				,	Kinkaid Ls.		တ	-			> Osgood				
				— Negli Creek Ls.	Degonia Ss.		•	ALEX				Cataract Brass			
					Clore Ls. Tobinsport							Brainard Sh.	Whitewater		
	z	160 to			Palestine Ss.	Buffalo Wallow	Z	IA	200	7	> Saluda		81		
z	A	375		- Siberia Ls. - Leopold Ls.	Menard Ls.	Wallow	<	CINCINNATIAN	to 1000	1 1 1		Ft. Atkinson L	Dillsboro	Maqu	oket
_				Lapon La	Walters- Branchville		_	NC.				Scales Sh.	Коре		
V	æ			— Vienna Ls.	burg Ss.		O	_	35	7.7-1		Trenton Ls.	Lexington		
_	ш		Ų <u>≐</u> ⊘		Vienna Ls. Tar Springs				230 100	万百			LIS.		
	-		于江		Glen Dean Ls.			MAIN	to 550	15:15	10		attin Itonica	Black	Rive
۵	S	130			Hardinsburg	Stephens -	>	CHAMPLAINIAN	0			Joa	chim Dol.		
۵	ш	to 240			Haney Ls. Big Clifty	port	0	AM	to 500	争			utchtown	An	cell
_	Ξ		7.7		Beech Creek Ls.		٥	S	O to	/ A	SW. IND.		eter Ss.		
	ပ		~~~	- I.v	Cypress Elwren		•	_	160		ONLY	EARLI	on Dol.		ن ن
S		100 to			J Reelsville Ls. Sample	West Baden	_	DIA	0	1	LL. 1	Shako	pee Dol.	airie du Chien	Superar
S		260			Beaver Bend Ls.	Troot Daven	0	SANADIAN	2000	1917		Oneo	ota Dol.	Prairie Chien	ox Su
			111 H		Bethel		-	3	20	427	7.7	Deta	si Dol.		Knox
-					Renault Paoli Ls.		Z		2000	77,7		P010	SI DUI.		
S	\vdash	40	-7/	Levias	Aux Vases		-	S	50 to	左左右	134 14 16	/	Franconia Ironton Ss.	٥	or.
~	z	to 680		Spar Mountain	Ste. Genevieve Ls.	Blue River	. B	CROIXAN	400	5=	slogE than	/	ialesville Ss.	Munising	Potsdam Superor
S	RA		PAP	Fredonia	St Levis La		Σ	ST. C	400 to			Eau	Claire	暑	Sm
-	ш	120	1		St. Louis Ls. Salem Ls.		<	S	1000 290	-					otsda
Σ	ΕY	130 to			Harrodsburg Ls.	Sanders	O		to 2180			Mt. Si	mon Ss.		۵
_	Σ	910			Muldraugh Ramp Creek		φ								
	A L	35 to		- Floyds Knob Ls.	Edwardsville Spickert Knob	Borden	PRE-		>1900	然終	Gran	nite, basalt, ari	kose, and other	rocks	
	>	760		LS.	New Providence Sh.	Dolucii	<u>a</u>			网络沙漠	1				
	ız	90			Rockford Ls. Coldwater Sh.						proportion to v				
	KINDER- HOOKIAN	to			New Albany Suphury Sh						Alex., Alexandria occ., Moccasin.	in; Sen., Senec	an;		
	호호	350			Sh. Ellsworth Sh.	1					ical Survey Bull	etin 59. 1986.	by Robert H. Sh	aver and	othe

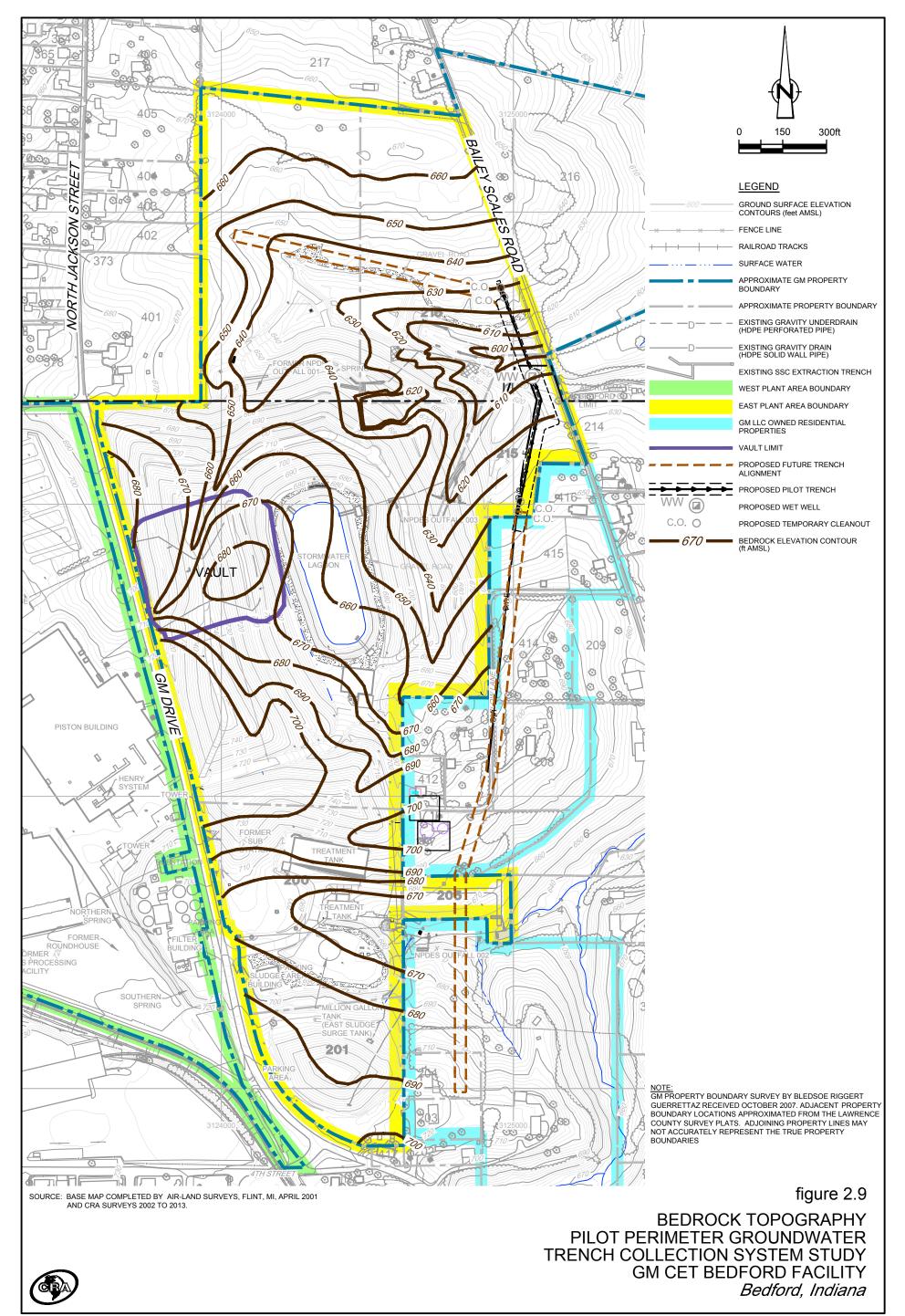
figure 2.5

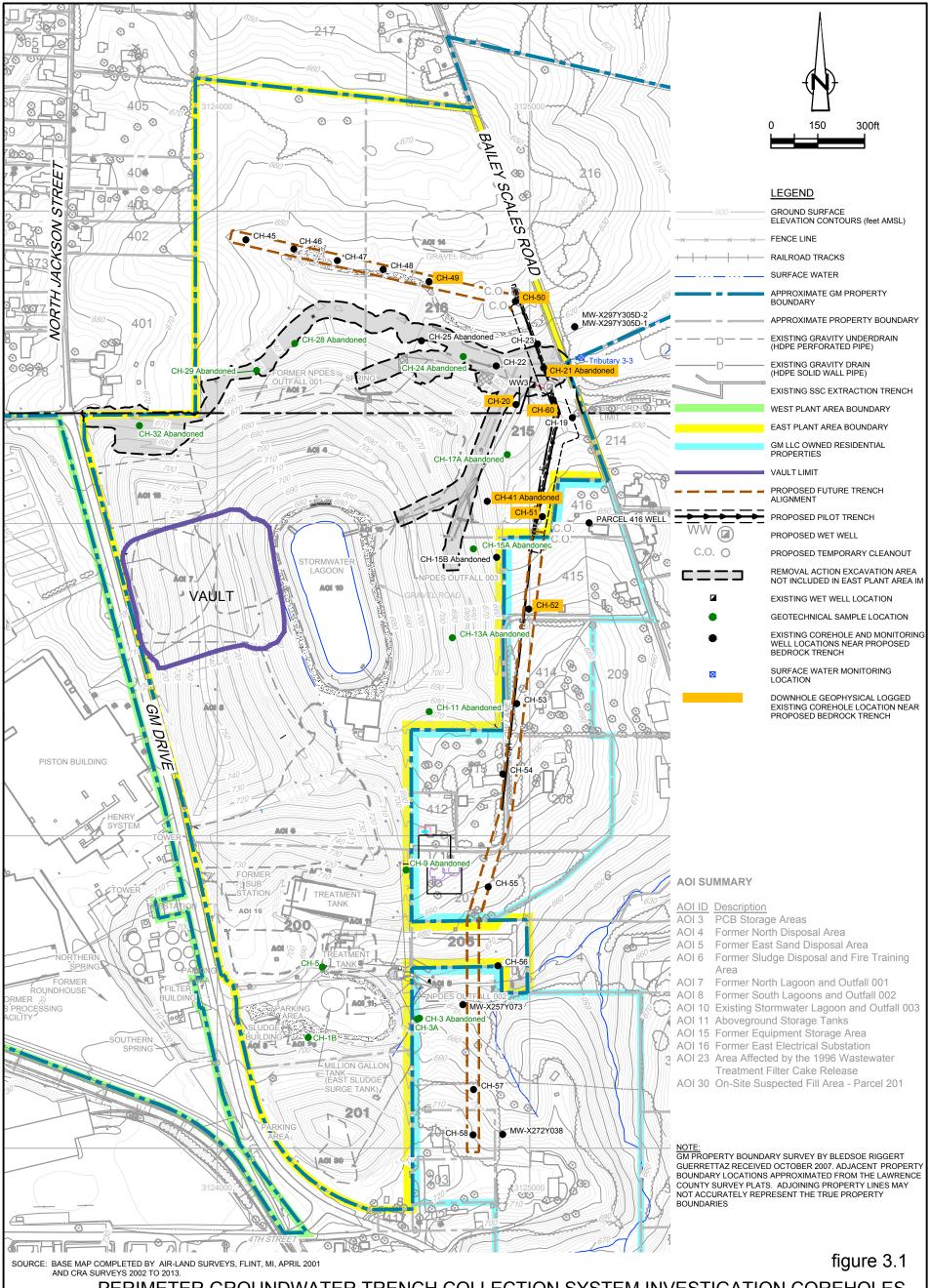
GENERALIZED STRATIGRAPHIC COLUMN FOR PALEOZOIC ROCKS IN INDIANA PILOT PERIMETER GROUNDWATER TRENCH COLLECTION SYSTEM STUDY GM CET BEDFORD FACILITY Bedford, Indiana

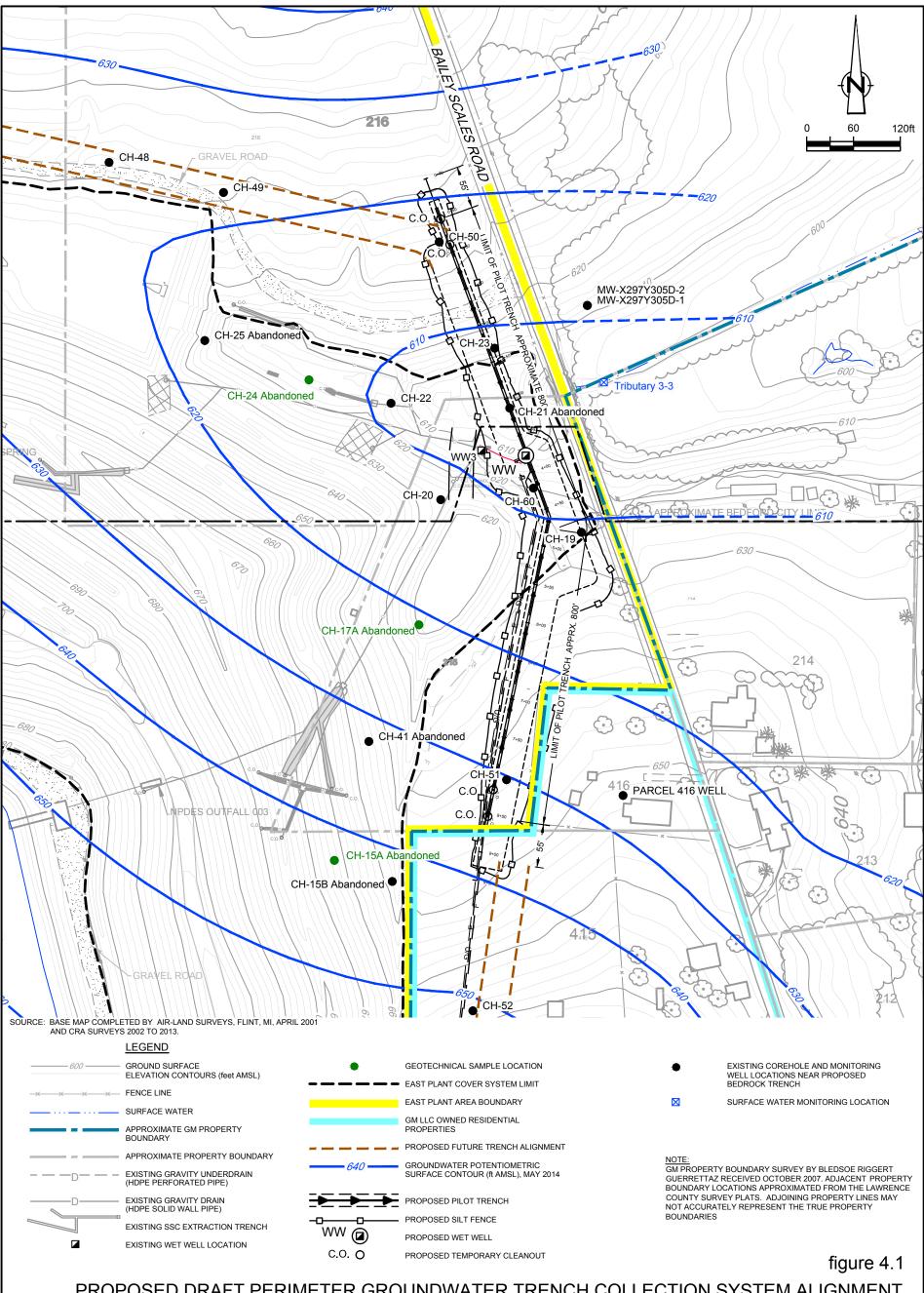
SOURCE: HILL, UNDATED

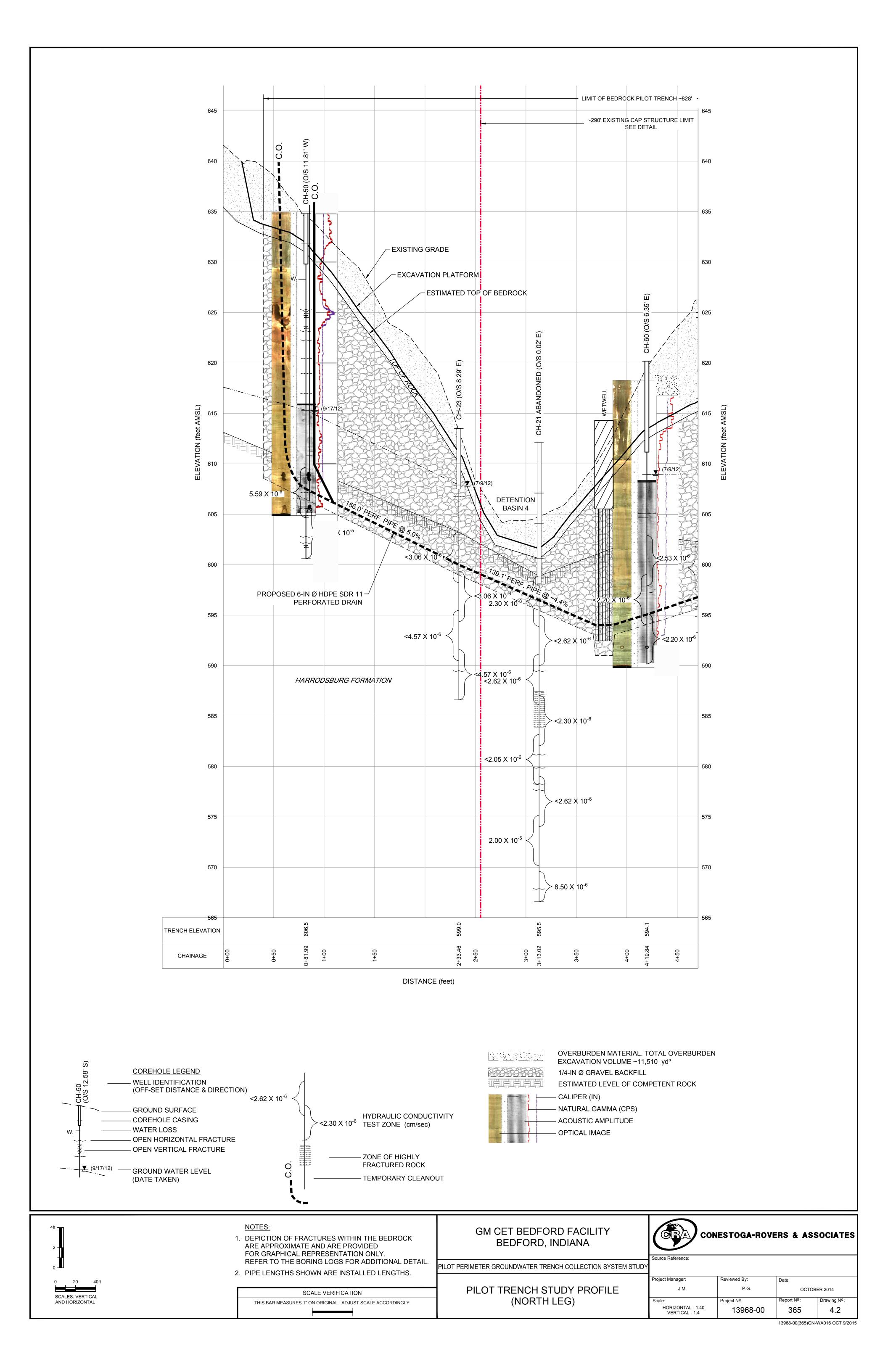


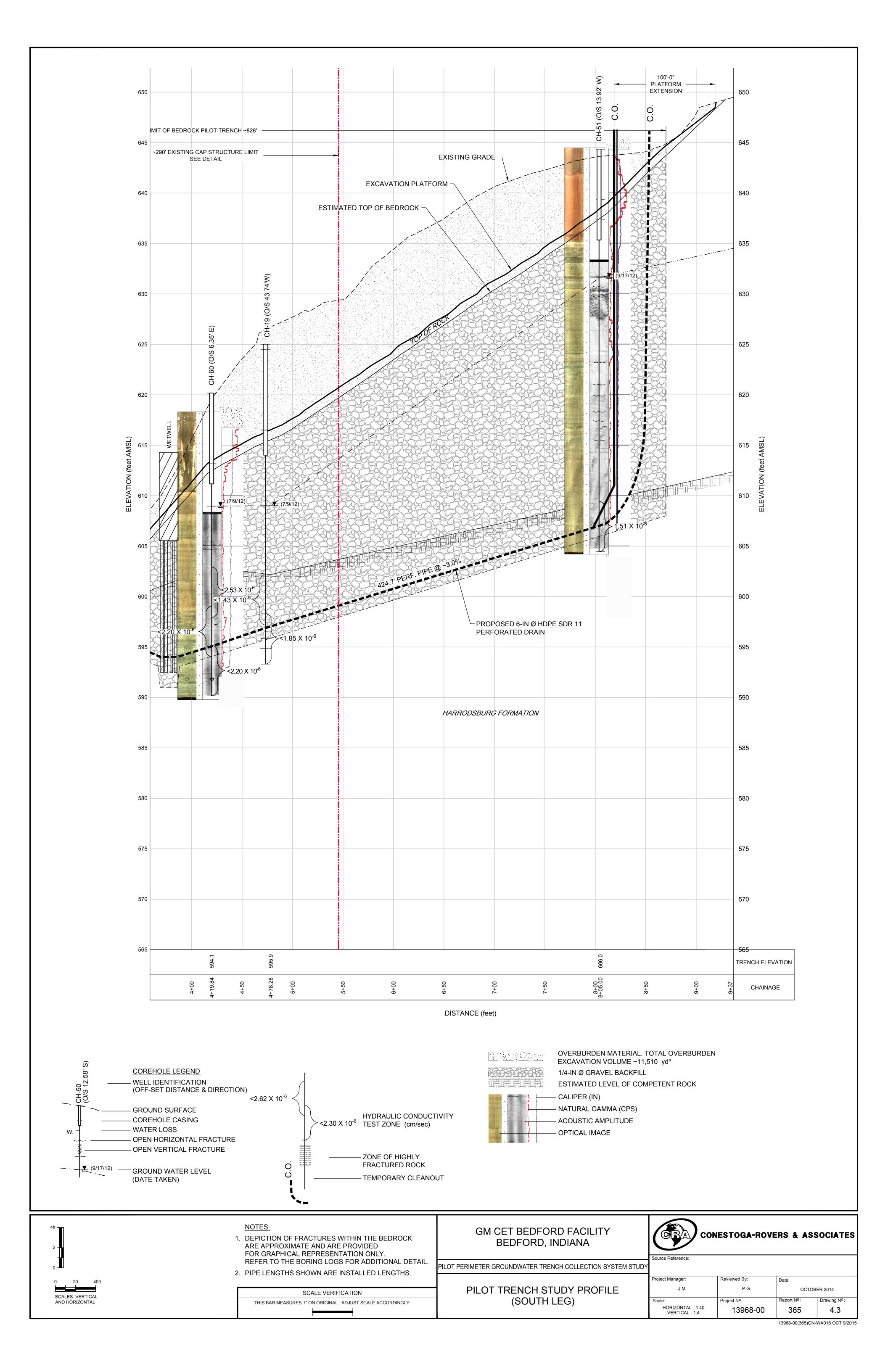

SOURCE: SOURCE: INDIANA GEOLOGICAL SURVEY, INDIANA DEPARTMENT OF TRANSPORTATION

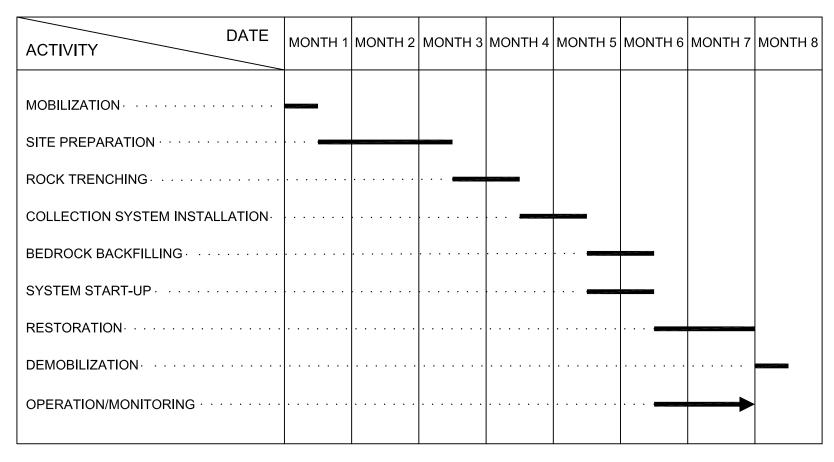

figure 2.6


LOWER EAST FORK WHITE RIVER DRAINAGE BASIN
PILOT PERIMETER GROUNDWATER
TRENCH COLLECTION SYSTEM STUDY
GM CET BEDFORD FACILITY
Bedford, Indiana






PERIMETER GROUNDWATER TRENCH COLLECTION SYSTEM INVESTIGATION COREHOLES
PILOT PERIMETER GROUNDWATER
TRENCH COLLECTION SYSTEM STUDY
GM CET BEDFORD FACILITY


Bedford, Indiana

PROPOSED DRAFT PERIMETER GROUNDWATER TRENCH COLLECTION SYSTEM ALIGNMENT
PILOT PERIMETER GROUNDWATER
TRENCH COLLECTION SYSTEM STUDY
GM CET BEDFORD FACILITY
Bedford, Indiana

<u>NOTE</u> <u>LEGEND</u>

SCHEDULE IS DEPENDENT ON SUITABLE WEATHER CONDITIONS. CONTINUOUS ACTIVITY

figure 9.1

PROJECT SCHEDULE
PILOT PERIMETER GROUNDWATER
TRENCH COLLECTION SYSTEM STUDY
GM CET BEDFORD FACILITY
Bedford, Indiana

Appendix A

Boring Logs

STRATIGRAPHIC AND INSTRUMENTATION LOG (OVERBURDEN)

Page 1 of 2

PROJECT NAME: GM BEDFORD RFI

PROJECT NUMBER: 013968

CLIENT: GENERAL MOTORS CORPORATION

LOCATION: BEDFORD, INDIANA

HOLE DESIGNATION: CH-15B

DATE COMPLETED: January 17, 2006

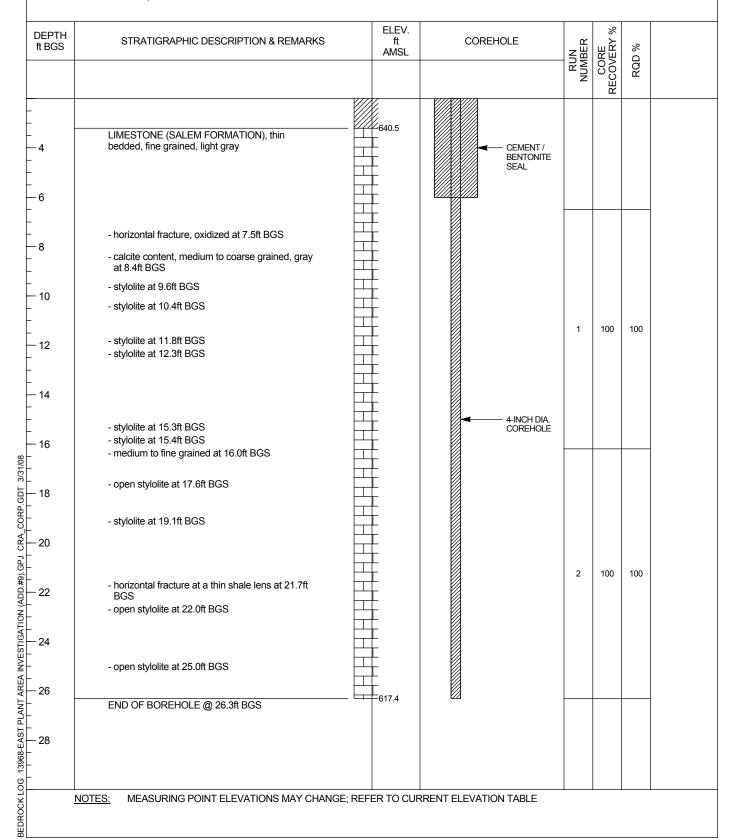
DRILLING METHOD: 4 1/4" HSA & HQ CORE

DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV. ft AMSL	COREH	OLE	<u>~</u>		SAMF		
	GROUND SURFACE	643.7			NUMBER	INTERVAL	REC (ft)	'N' VALUE	
2	CL-CLAY, with silt, soft-firm, tan-brown, moist		-	- 4-INCH DIA. STEEL CASING					
4	END OF OVERBURDEN HOLE @ 3.2ft BGS								
6									
8									
10									
12									
14									
16									
18									
20									
22									
24									
26									
 <u>NO</u>	OTES: MEASURING POINT ELEVATIONS MAY CHANGE; REFI	ER TO CUF	RRENT ELEVATIO	N TABLE					

Page 2 of 2

PROJECT NAME: GM BEDFORD RFI

PROJECT NUMBER: 013968


CLIENT: GENERAL MOTORS CORPORATION

LOCATION: BEDFORD, INDIANA

HOLE DESIGNATION: CH-15B

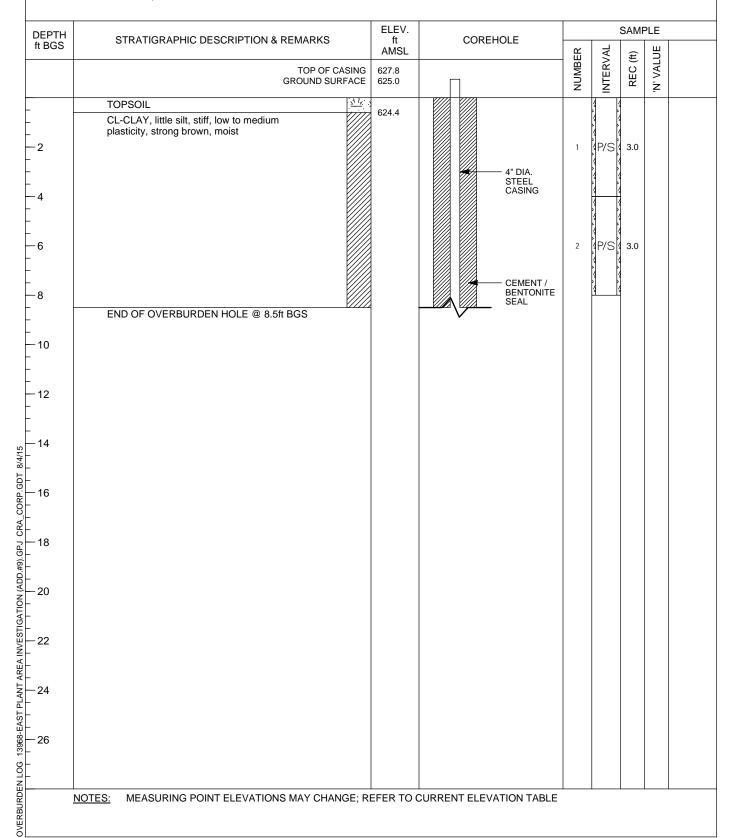
DATE COMPLETED: January 17, 2006

DRILLING METHOD: 4 1/4" HSA & HQ CORE

STRATIGRAPHIC AND INSTRUMENTATION LOG (OVERBURDEN)

Page 1 of 3

PROJECT NAME: GM BEDFORD RFI


PROJECT NUMBER: 013968

CLIENT: GENERAL MOTORS CORPORATION

LOCATION: BEDFORD, INDIANA

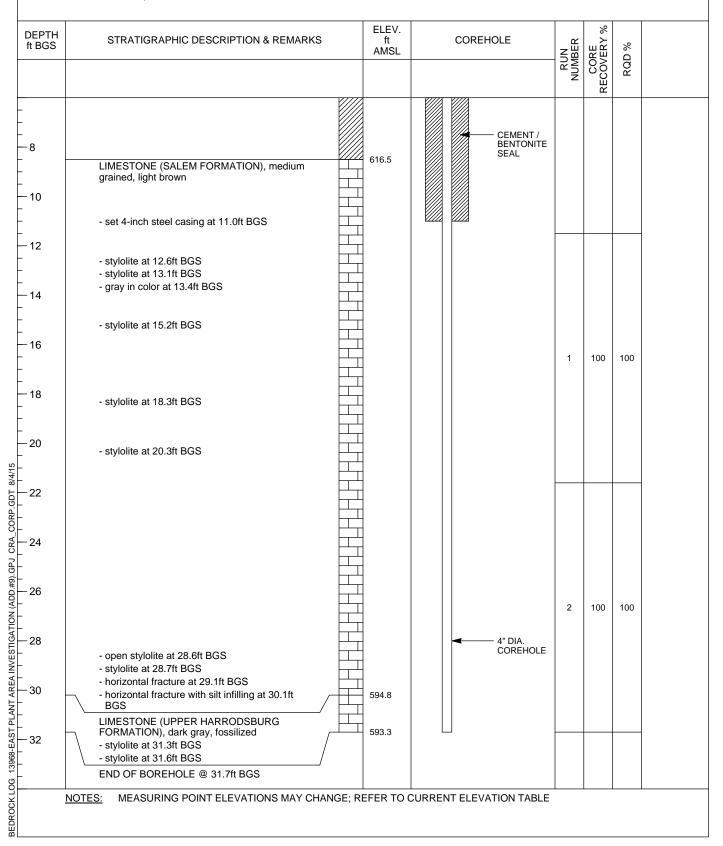
HOLE DESIGNATION: CH-19
DATE COMPLETED: June 15, 2005

DRILLING METHOD: 6 1/4" HSA & HQ CORE

Page 2 of 3

PROJECT NAME: GM BEDFORD RFI

PROJECT NUMBER: 013968


CLIENT: GENERAL MOTORS CORPORATION

LOCATION: BEDFORD, INDIANA

HOLE DESIGNATION: CH-19

DATE COMPLETED: June 15, 2005

DRILLING METHOD: 6 1/4" HSA & HQ CORE

Page 3 of 3

PROJECT NAME: GM BEDFORD RFI

PROJECT NUMBER: 013968

CLIENT: GENERAL MOTORS CORPORATION

LOCATION: BEDFORD, INDIANA

HOLE DESIGNATION: CH-19

DATE COMPLETED: June 15, 2005

DRILLING METHOD: 6 1/4" HSA & HQ CORE

DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV. ft AMSL	COREHOLE	RUN	CORE RECOVERY %	RQD %	
					REC		
	Limestone formation contacts may represent gradational changes and as shown on this log are approximations of the actual formation						
36	contact.						
38							
40							
42							
44							
46							
48							
50							
52							
54							
FG							
56							
58							
60							
NIC	OTES: MEASURING POINT ELEVATIONS MAY CHANGE;	REFER TO CL	JRRENT ELEVATION TARI	 F			

STRATIGRAPHIC AND INSTRUMENTATION LOG (OVERBURDEN)

Page 1 of 2

PROJECT NAME: GM BEDFORD RFI

PROJECT NUMBER: 013968

CLIENT: GENERAL MOTORS CORPORATION

LOCATION: BEDFORD, INDIANA

HOLE DESIGNATION: CH-20

DATE COMPLETED: June 7, 2005 DRILLING METHOD: 6 1/4" HSA & HQ CORE

DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS TOP OF CASING		ELEV. ft	COREHOLE			SAMPLE						
ft BGS			AMSL				INTERVAL	REC (ft)	N' VALUE	PID (ppm)			
	TOP OF I		621.8 619.2	П		NUMBER	INTE	REC	, Z) OIA			
2 -	CL-CLAY (FILL), with silt, gravel, firm, low plasticity, brown, moist ML-SILT (FILL), little clay, compact, beige, wet, dilatant		617.2	*	4" DIA. STEEL CASING	1	S	3.0		0.0			
6 -	CL-CLAY (FILL), little silt, soft, medium plasticity, dark gray, very moist to wet		613.2			2	S	4.0		0.0			
10					CEMENT / BENTONITE SEAL	3	7	3.0		0.0			
12	Rock fragments END OF OVERBURDEN HOLE @ 14.0ft BGS		605.7			4	P/S	2.0		0.0			
16													
18													
20													
22													
24													
26													

Page 2 of 2

PROJECT NAME: GM BEDFORD RFI

PROJECT NUMBER: 013968

CLIENT: GENERAL MOTORS CORPORATION

LOCATION: BEDFORD, INDIANA

HOLE DESIGNATION: CH-20 DATE COMPLETED: June 7, 2005

DRILLING METHOD: 6 1/4" HSA & HQ CORE

t BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV. ft AMSL	COR	EHOLE	RUN NUMBER	CORE RECOVERY %	RQD %
14 —	Rock fragments LIMESTONE (SALEM FORMATION), medium grained, gray with brown in color - set 4-inch steel casing at 17.0ft BGS	605.7 605.2					
18 –	- stylolite at 17.6ft BGS LIMESTONE (UPPER HARRODSBURG FORMATION), medium to coarse grained, gray/tan - horizontal fracture at 20.8ft BGS	601.2					
· 22	 horizontal fracture at 22.7ft BGS shale parting at 23.4ft BGS shale parting at 23.8ft BGS shale parting at 24.4ft BGS 1/2-inch vug at 25.4ft BGS 				1	100	100
28	 open stylolite at 26.0ft BGS stylolite at 27.5ft BGS fossils present at 27.9ft BGS 8-inch slightly porous section at 28.6ft BGS 			—— 4" DIA. COREHOLE			
30	 stylolite at 30.4ft BGS stylolite at 30.9ft BGS stylolite at 31.5ft BGS open stylolite at 32.1ft BGS 						
-34	 10-inch slightly porous section at 33.3ft BGS horizontal fracture at 33.7ft BGS stylolite at 35.1ft BGS 				2	100	100
-36	- horizontal fracture at 37.1ft BGS END OF BOREHOLE @ 38.0ft BGS	581.2					

STRATIGRAPHIC AND INSTRUMENTATION LOG (OVERBURDEN)

Page 1 of 3

PROJECT NAME: GM BEDFORD RFI

PROJECT NUMBER: 013968

CLIENT: GENERAL MOTORS CORPORATION

LOCATION: BEDFORD, INDIANA

HOLE DESIGNATION: CH-21

DATE COMPLETED: June 6, 2005
DRILLING METHOD: 6 1/4" HSA & HQ CORE

EPTH TBGS	STRATIGRAPHIC DESCRIPTION & REMARKS		ELEV. ft	COREHOLE		SAMPLE						
11 11 11 11 11 11 11 11 11 11 11 11 11			AMSL 612.1			NUMBER	INTERVAL	REC (ft)	N' VALUE	PID (ppm)		
	CL-CLAY (FILL), trace gravel, low plasticity,		\$			ž	<u></u>	<u>~</u>	ž	<u> </u>		
2	strong brown, moist		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX			1	1 P/S	1.8		0.0		
3	SP-SAND (FILL), fine grained, poorly graded, brown, moist		X X X607.1 X			2	1 1 2 2 2 2 2 2 3 4 3 4 4 4 4 4 4 4 4 4 4 4	3.0		0.2		
3	- Wet at 7.0ft BGS	🎇	X X X ×604.1		CEMENT /		1					
10	CL-CLAY (FILL), soft, medium plasticity, gray, moist		X X X X X		CEMENT / BENTONITE SEAL	3	# # P/S	3.5		0.0		
12	END OF OVERBURDEN HOLE @ 11.5ft BGS	🔉	X X X		_							
14												
16												
18												
20												
22												
24												
26												

Page 2 of 3

PROJECT NAME: GM BEDFORD RFI

PROJECT NUMBER: 013968

CLIENT: GENERAL MOTORS CORPORATION

LOCATION: BEDFORD, INDIANA

HOLE DESIGNATION: CH-21

DATE COMPLETED: June 6, 2005

DRILLING METHOD: 6 1/4" HSA & HQ CORE FIELD PERSONNEL: K. VANDER MEULEN

DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV. ft AMSL	CORE	HOLE	RUN NUMBER	CORE RECOVERY %	RQD %	
12	LIMESTONE (SALEM FORMATION), medium grained, gray LIMESTONE (UPPER HARRODSBURG FORMATION), medium grained, gray	600.6		CEMENT / BENTONITE SEAL				
16	 set 4-inch steel casing at 14.0ft BGS 7-inch slightly porous section at 14.5ft BGS stylolite at 15.3ft BGS stylolite at 15.6ft BGS vug at 16.1ft BGS open stylolite at 17.0ft BGS 							
18	 - 7-inch slightly porous section at 18.0ft BGS - stylolite at 18.8ft BGS - 1 feet of slightly porous section at 19.7ft BGS 				1	100	99	
22	 open stylolite at 21.4ft BGS stylolite at 22.5ft BGS horizontal fracture at 22.6ft BGS stylolite at 23.0ft BGS stylolite at 23.1ft BGS 							
26	 stylolite at 23.4ft BGS 1/4-inch vug at 24.1ft BGS stylolite at 24.6ft BGS 3.5-feet of highly vertical and horizontal fractures with partial silt infilling at 24.7ft BGS 							
28	- stylolite at 28.6ft BGS							
30	stylolite at 30.0ft BGSstylolite at 30.4ft BGSstylolite at 30.6ft BGS		—	— 4" DIA. COREHOLE	2	100	65	
32	 9-inch fracture section with silt infilling at 30.9ft BGS horizontal fracture at 32.2ft BGS 							
34	- horizontal fracture at 33.8ft BGS - horizontal fracture at 34.4ft BGS							
36								
	- open stylolite at 37.3ft BGS							

Page 3 of 3

PROJECT NAME: GM BEDFORD RFI

PROJECT NUMBER: 013968

CLIENT: GENERAL MOTORS CORPORATION

LOCATION: BEDFORD, INDIANA

HOLE DESIGNATION: CH-21

DATE COMPLETED: June 6, 2005

DRILLING METHOD: 6 1/4" HSA & HQ CORE FIELD PERSONNEL: K. VANDER MEULEN

DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV. ft AMSL	COREHOLE	RUN	CORE RECOVERY %	RQD %	
- 40	- stylolite at 38.1ft BGS - shale parting at 39.3ft BGS - stylolite at 40.0ft BGS			3	100	100	
42	- stylolite at 41.0ft BGS - stylolite at 41.2ft BGS - 1/2-inch shale parting at 41.5ft BGS - stylolite at 42.9ft BGS		4" DIA. COREHOLE				
- 44	- stylolite at 43.1ft BGS - horizontal fracture at 44.2ft BGS - stylolite at 44.6ft BGS - open stylolite at 44.7ft BGS - open stylolite at 45.0ft BGS						
- 46	- stylolite at 45.4ft BGS END OF BOREHOLE @ 45.5ft BGS						
- 48	Limestone formation contacts may represent gradational changes and as shown on this log are approximations of the actual formation contact.						
- 50							
- 52							
- 54							
- 56							
- 58							
- 60							
- 62							
- 64							

STRATIGRAPHIC AND INSTRUMENTATION LOG (OVERBURDEN)

Page 1 of 2

PROJECT NAME: GM BEDFORD RFI

PROJECT NUMBER: 013968

LOCATION: BEDFORD, INDIANA

CLIENT: GENERAL MOTORS CORPORATION

HOLE DESIGNATION: CH-22
DATE COMPLETED: June 1, 2005

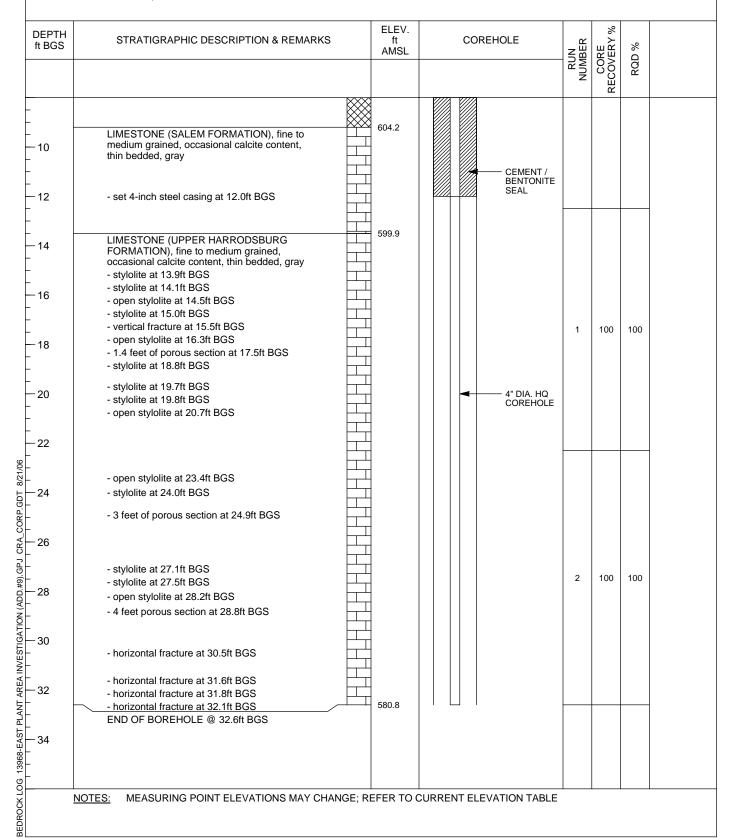
DRILLING METHOD: 6 1/4" HSA & HQ CORE

DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV. ft	COREHOLE	SAMPLE					
1000	TOP OF CASIN GROUND SURFAC	AMSL 6 615.9 613.4	П	NUMBER	INTERVAL	REC (ft)	N' VALUE	PID (ppm)	
2	CL-CLAY (FILL), some silt, trace gravel, firm, low to medium plasticity, strong brown, moist			1	= P/S	3.0	-	0.0	
5			4" DIA. STEEL CASING CEMENT / BENTONITE SEAL	2		3.0		0.0	
10	END OF OVERBURDEN HOLE @ 9.2ft BGS			3	P/S	1.0		0.0	
12									
14									
16									
18									
20									
22									
24									
26									

Page 2 of 2

PROJECT NAME: GM BEDFORD RFI

PROJECT NUMBER: 013968


CLIENT: GENERAL MOTORS CORPORATION

LOCATION: BEDFORD, INDIANA

HOLE DESIGNATION: CH-22

DATE COMPLETED: June 1, 2005

DRILLING METHOD: 6 1/4" HSA & HQ CORE

Page 1 of 2

PROJECT NAME: GM BEDFORD RFI

PROJECT NUMBER: 013968

CLIENT: GENERAL MOTORS CORPORATION

LOCATION: BEDFORD, INDIANA

HOLE DESIGNATION: CH-23

DATE COMPLETED: June 1, 2005

DRILLING METHOD: 6 1/4" HSA & HQ CORE

FIELD PERSONNEL: J. LUZWICK / K. VANDER MEULEN

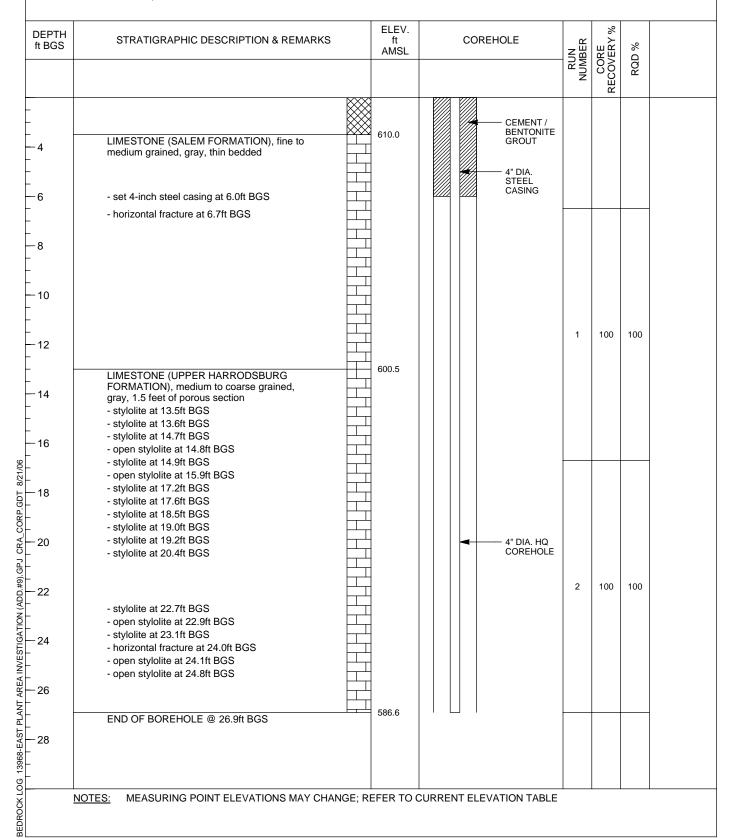
DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV.	COREHOLE			SAMI		
	TOP OF CASING GROUND SURFACE	616.3 613.5	П	NUMBER	INTERVAL	REC (ft)	'N' VALUE	PID (ppm)
2	CL-CLAY (FILL), trace gravel, soft, medium plasticity, strong brown, moist	×××××××××××××××××××××××××××××××××××××××	4" DIA. STEEL CASING CEMENT /	1	1". 2". 2". 2". 3". 4". 4". 4". 4". 4". 4". 4". 4". 4". 4	3.5		1.0
6	END OF OVERBURDEN HOLE @ 3.5ft BGS		CEMENT / BENTONITE GROUT		<u>.</u>]			
8								
10								
12								
16								
18								
20								
22								
24								
	IOTES: MEASURING POINT ELEVATIONS MAY CHANGE; F							İ

Page 2 of 2

PROJECT NAME: GM BEDFORD RFI

PROJECT NUMBER: 013968

CLIENT: GENERAL MOTORS CORPORATION


LOCATION: BEDFORD, INDIANA

HOLE DESIGNATION: CH-23

DATE COMPLETED: June 1, 2005

DRILLING METHOD: 6 1/4" HSA & HQ CORE

FIELD PERSONNEL: J. LUZWICK / K. VANDER MEULEN

Page 1 of 2

PROJECT NAME: GM BEDFORD RFI

PROJECT NUMBER: 013968

CLIENT: GENERAL MOTORS CORPORATION

LOCATION: BEDFORD, INDIANA

HOLE DESIGNATION: CH-41
DATE COMPLETED: June 14, 2005

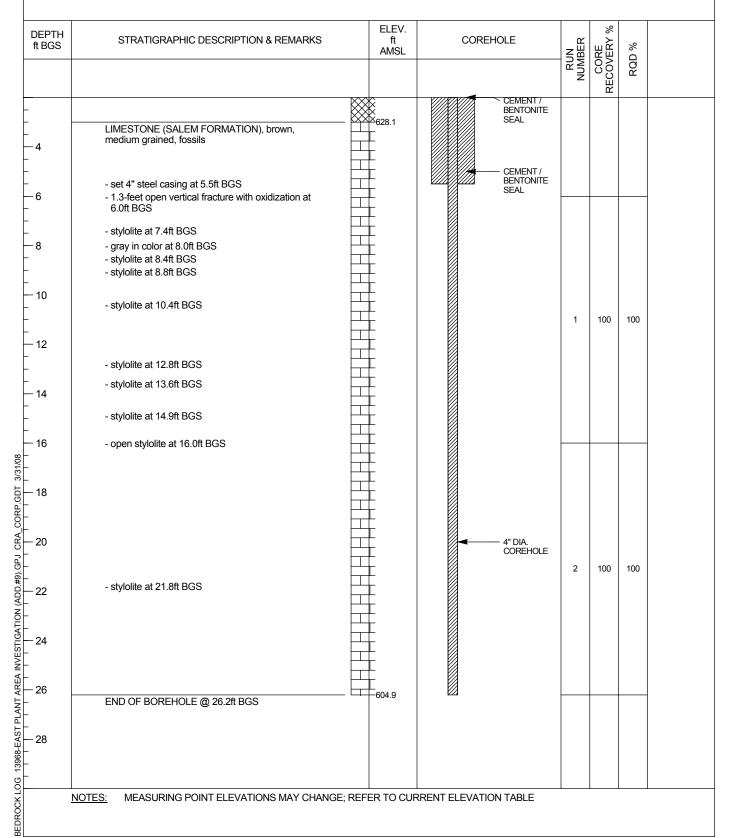
DRILLING METHOD: 6 1/4" HSA & HQ CORE

DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV. ft	COREHO	DLE			SAME		
11 15 15 15 15 15 15 15 15 15 15 15 15 1	GROUND SURFACE	631.1			NUMBER	INTERVAL	REC (ft)	N' VALUE	PID (ppm)
					2	Ē	32	ž	□ □
	GRAVEL (FILL) CL-CLAY (FILL), soft, medium plasticity, strong brown, moist	630.5		4" DIA. STEEL CASING		4	4	1.N.	
2	- trace gravel at 2.0ft BGS			CEMENT / BENTONITE SEAL	1	\$P/S 	3.0		0.0
	END OF OVERBURDEN HOLE @ 3.0ft BGS	*		SEAL		<u> </u>	1		
4									
6									
8									
10									
12									
14									
16									
· 18									
20									
22									
24									
26									
	AFAOLIDINO DONTELE VITORO ANA CONTRA		DENT EL EL CATACA	TABLE					
<u>NC</u>	<u>OTES:</u> MEASURING POINT ELEVATIONS MAY CHANGE; REF	EK IU CUI	AMEINI ELEVATION	IADLE					

Page 2 of 2

PROJECT NAME: GM BEDFORD RFI

PROJECT NUMBER: 013968


CLIENT: GENERAL MOTORS CORPORATION

LOCATION: BEDFORD, INDIANA

HOLE DESIGNATION: CH-41

DATE COMPLETED: June 14, 2005

DRILLING METHOD: 6 1/4" HSA & HQ CORE

Page 1 of 3

PROJECT NAME: INVESTIGATORY BEDROCK COREHOLES

PROJECT NUMBER: 013968

CLIENT: GENERAL MOTORS CORPORATION

LOCATION: BEDFORD, INDIANA

HOLE DESIGNATION: CH-49
DATE COMPLETED: August 23, 2012

DRILLING METHOD: HSA / HQ CORE

DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV.	COREHOLE			SAMI		
11 563	TOP OF CASIN	AMSL G 643.8		NUMBER	INTERVAL	REC (ft)	'N' VALUE	
	GROUND SURFAC	E 641.1	V///	Ď	N N	R	Ż	
-2	CL-SILTY CLAY, little silt, firm, medium plasticity, strong brown, moist		CEMENT / BENTONITE GROUT					
-4	END OF OVERBURDEN HOLE @ 3.5ft BGS	<i>ZZ</i>						
-6								
- 8								
-10								
-12								
-14								
-16								
-18								
- 20								
-22								
-24								
 <u>NO</u>	TES: MEASURING POINT ELEVATIONS MAY CHANGE;	REFER TO	CURRENT ELEVATION TABLE					

Page 2 of 3

PROJECT NAME: INVESTIGATORY BEDROCK COREHOLES

PROJECT NUMBER: 013968

CLIENT: GENERAL MOTORS CORPORATION

LOCATION: BEDFORD, INDIANA

HOLE DESIGNATION: CH-49

DATE COMPLETED: August 23, 2012 DRILLING METHOD: HSA / HQ CORE

EPTH BGS	STRATIGRAPHIC DESCRIPTION & REMARK	(S	ELEV. ft AMSL		CORE	EHOLE	RUN	CORE RECOVERY %	RQD %
			637.6						
4	LIMESTONE (SALEM FORMATION), fine grained, thin bedded, calcite content, light grey		037.0			4" DIA			
6						— 4" DIA. STEEL CASING			
	- set 4-inch steel casing at 6.5ft BGS			2222	2222				
	- stylolite at 7.3ft BGS								
8	- horizontal fracture at 8.1ft BGS								
10	- stylolite at 9.8ft BGS								
	- horizontal fracture at 10.2ft BGS						1	98	98
.12		一片							
12	- open stylolite at 12.3ft BGS								
	- horizontal fracture at 13.1ft BGS								
14	- horizontal fracture at 14.3ft BGS								
16	- stylolite at 15.9ft BGS - horizontal fracture at 16.3ft BGS								
18					-	— 4" DIA. HQ_			
						COREHOLE			
20	- 7-inch vertical fracture at 19.8ft BGS						2	100	100
	- horizontal fracture at 20.9ft BGS	井							
22									
	harizantal fracture of 22.26 DOS								
24	- horizontal fracture at 23.2ft BGS								
24	ot dolito et 24.7# PCC								
	- stylolite at 24.7ft BGS								
26									
		一片							
	- open stylolite at 27.1ft BGS								

Page 3 of 3

PROJECT NAME: INVESTIGATORY BEDROCK COREHOLES

PROJECT NUMBER: 013968

CLIENT: GENERAL MOTORS CORPORATION

LOCATION: BEDFORD, INDIANA

HOLE DESIGNATION: CH-49

DATE COMPLETED: August 23, 2012 DRILLING METHOD: HSA / HQ CORE

DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV. ft AMSL	COREHOLE	RUN NUMBER	CORE RECOVERY %	RQD %	
30	 - stylolite at 28.6ft BGS - 6-inch medium grained section at 29.6ft BGS - fine grained at 30.0ft BGS 			3	100	100	
32	- open stylolite at 30.9ft BGS - trace small fosil content at 31.0ft BGS		4" DIA. HQ COREHOLE				
34	END OF BOREHOLE @ 34.2ft BGS	606.9					
36							
38							
40							
42							
46							
48							
50							
52							
	OTES: MEASURING POINT ELEVATIONS MAY CHAN						

Page 1 of 3

PROJECT NAME: INVESTIGATORY BEDROCK COREHOLES

PROJECT NUMBER: 013968

CLIENT: GENERAL MOTORS CORPORATION

LOCATION: BEDFORD, INDIANA

HOLE DESIGNATION: CH-50

DATE COMPLETED: July 13, 2012

DRILLING METHOD: HSA / HQ CORE FIELD PERSONNEL: K. VANDER MEULEN

DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV.	COREHOLE			SAMI		
	TOP OF CASING GROUND SURFACE	AMSL 637.6 634.8		NUMBER	INTERVAL	REC (ft)	'N' VALUE	
-2	CL-SILTY CLAY, with silt, firm, low plasticity, strong brown, moist		CEMENT / BENTONITE GROUT	2	2		2	
6 8	END OF OVERBURDEN HOLE @ 3.0ft BGS		V					
12								
14								
16								
18								
20								
22								
24								
NO	OTES: MEASURING POINT ELEVATIONS MAY CHANGE; RI	EFER TO (L CURRENT ELEVATION TABLE					

Page 2 of 3

PROJECT NAME: INVESTIGATORY BEDROCK COREHOLES

PROJECT NUMBER: 013968

CLIENT: GENERAL MOTORS CORPORATION

LOCATION: BEDFORD, INDIANA

HOLE DESIGNATION: CH-50

DATE COMPLETED: July 13, 2012 DRILLING METHOD: HSA / HQ CORE

DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV. ft AMSL	CORE	HOLE	RUN NUMBER	CORE RECOVERY %	RQD %	
4	LIMESTONE (SALEM FORMATION), fine grained, thin bedded, calcite content, light brown/light grey - set 4-inch steel casing at 5.0ft BGS	631.8	•	— 4" DIA. STEEL CASING				
8	- no water return at 6.5ft BGS							
10	 horizontal fracture with clay infill at 9.5ft BGS 4-inch vertical fracture with clay infill at 9.8ft BGS 9-inch vertical fracture with clay infill at 10.2ft BGS near vertical fracture at 11.3ft BGS 				1	100	100	
12	horizontal fracture at 11.6ft BGSlight grey in color at 11.7ft BGShorizontal fracture at 12.5ft BGS							
16	horizontal fracture at 14.3ft BGShorizontal fracture at 15.8ft BGS							
18	- horizontal fracture at 17.8ft BGS				2	100	100	
20			•	— 4" DIA. HQ COREHOLE		100		
22								
24								
26	- horizontal fracture at 27.6ft BGS							

Page 3 of 3

PROJECT NAME: INVESTIGATORY BEDROCK COREHOLES

PROJECT NUMBER: 013968

CLIENT: GENERAL MOTORS CORPORATION

LOCATION: BEDFORD, INDIANA

HOLE DESIGNATION: CH-50

DATE COMPLETED: July 13, 2012 DRILLING METHOD: HSA / HQ CORE

DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS		ELEV. ft AMSL	COREHOLE	RUN NUMBER	CORE RECOVERY %	RQD %	
	- horizontal fracture at 29.2ft BGS				3	100	100	
30	- 9-inch vertical fracture with iron staining at 30.0ft BGS							
32	horizontal fracture at 32.0ft BGShorizontal fracture with iron staining at 32.6ft							
34	BGS - 5-inch vertical fracture with iron staining at 33.0ft BGS		COO C					
	END OF BOREHOLE @ 34.2ft BGS	- '	600.6	_				
36								
38								
40								
40								
42								
44								
46								
48								
50								
52								
52								

Page 1 of 3

PROJECT NAME: INVESTIGATORY BEDROCK COREHOLES

PROJECT NUMBER: 013968

CLIENT: GENERAL MOTORS CORPORATION

LOCATION: BEDFORD, INDIANA

HOLE DESIGNATION: CH-51
DATE COMPLETED: July 16, 2012
DRILLING METHOD: HSA/HQ CORE

DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS		ELEV. ft	CORE	HOLE	~		SAMF		
	TOP OF CA GROUND SUR	ASING RFACE	AMSL 646.7 644.3			NUMBER	INTERVAL	REC (ft)	N' VALUE	
-2	WOOD CHIPS CL-CLAY (FILL)		643.3						2	
4					CEMENT / BENTONITE GROUT					
6	CL-SILTY CLAY, little silt, firm, medium plasticity, strong brown, moist END OF OVERBURDEN HOLE @ 7.0ft BGS		639.3		-					
8	END OF OVERDONDEN HOLE & 1.011 BOS			v						
10										
12										
14										
16										
-18										
- 22										
24										
-	OTES: MEASURING POINT ELEVATIONS MAY CHAN	IGE; RE	EFER TO C	CURRENT ELEV	ATION TABLE					

Page 2 of 3

PROJECT NAME: INVESTIGATORY BEDROCK COREHOLES

PROJECT NUMBER: 013968

CLIENT: GENERAL MOTORS CORPORATION

LOCATION: BEDFORD, INDIANA

HOLE DESIGNATION: CH-51

DATE COMPLETED: July 16, 2012
DRILLING METHOD: HSA / HQ CORE

EPTH BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV. ft AMSL	С	OREHOLE	RUN	CORE RECOVERY %	RQD %	
3	LIMESTONE (SALEM FORMATION), fine grained, thin bedded, light grey, calcite content - set 4-inch steel casing at 9.0ft BGS	637.3		4" DIA. STEEL CASING				
12	open stylolite at 10.8ft BGSopen stylolite at 11.6ft BGSopen stylolite with iron staining at 12.7ft BGS							
14	 horizontal fracture at 13.6ft BGS open stylolite at 13.9ft BGS stylolite at 14.1ft BGS horizontal fracture at 14.6ft BGS 				1	100	100	
-16	- open stylolite at 18.1ft BGS							
-20	- horizontal fracture at 21.1ft BGS		•	4" DIA. HQ COREHOLE				
-24	 horizontal fracture at 23.3ft BGS horizontal fracture at 24.4ft BGS stylolite at 24.8ft BGS stylolite at 25.3ft BGS 				2	100	100	
- 26	horizontal fracture at 26.0ft BGShorizontal fracture at 26.9ft BGS							
-28	- open stylolite at 27.7ft BGS							
-30	- horizontal fracture at 28.8ft BGS- open stylolite at 30.8ft BGS							

Page 3 of 3

PROJECT NAME: INVESTIGATORY BEDROCK COREHOLES

PROJECT NUMBER: 013968

CLIENT: GENERAL MOTORS CORPORATION

LOCATION: BEDFORD, INDIANA

HOLE DESIGNATION: CH-51

DATE COMPLETED: July 16, 2012 DRILLING METHOD: HSA / HQ CORE

DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV. ft AMSL	COREHOLE	RUN	CORE RECOVERY %	RQD %	
		Ц		Z	REC		
34		П П П		3	100	100	
36					100	100	
38							
40	END OF BOREHOLE @ 39.9ft BGS	604.4					
42							
44							
46							
48							
50							
52							
54							
56							
NO.	TES: MEASURING POINT ELEVATIONS MAY CHANGE; I	REFER TO (CURRENT ELEVATION TABLE				

Page 1 of 4

PROJECT NAME: INVESTIGATORY BEDROCK COREHOLES

PROJECT NUMBER: 013968

CLIENT: GENERAL MOTORS CORPORATION

LOCATION: BEDFORD, INDIANA

HOLE DESIGNATION: CH-52

DATE COMPLETED: August 28, 2012 DRILLING METHOD: HSA / HQ CORE

DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV. ft	COREHOLE			SAMI		
t BGS	TOP OF CASINO	AMSL		NUMBER	INTERVAL	REC (ft)	'N' VALUE	
	GROUND SURFACE	668.3	П	N	INTE	RE	N.	
	CL-SILTY CLAY, little silt, firm, low plasticity, strong brown, moist							
			CEMENT / BENTONITE GROUT					
2			GROUT					
	END OF OVERBURDEN HOLE @ 3.0ft BGS							
4								
6								
3								
·								
10								
12								
14								
14								
16								
18								
20								
20								
22								
24								
NC	OTES: MEASURING POINT ELEVATIONS MAY CHANGE;	REFER TO	CURRENT ELEVATION TABLE					

Page 2 of 4

PROJECT NAME: INVESTIGATORY BEDROCK COREHOLES

PROJECT NUMBER: 013968

CLIENT: GENERAL MOTORS CORPORATION

LOCATION: BEDFORD, INDIANA

HOLE DESIGNATION: CH-52

DATE COMPLETED: August 28, 2012
DRILLING METHOD: HSA / HQ CORE

		ft AMSL	CORE		RUN	CORE RECOVERY	RQD %	
- 4	LIMESTONE (SALEM FORMATION), fine grained, thin bedded, light grey, trace calcite - set 4-inch steel casing at 5.0ft BGS - 1-feet broken rock at 5.5ft BGS	665.3		— 4" DIA. STEEL CASING				
- 6 - 8 - 10	- horizontal fracture with clay infill at 8.5ft BGS						00	
-12	horizontal fracture at 10.4ft BGSopen stylolite at 11.9ft BGS				1	89	89	
-14	- open stylolite at 13.8ft BGS							
-16	- oxidized horizontal fracture at 16.0ft BGS							
- 18	horizontal fracture at 17.8ft BGS - horizontal fracture with half-inch clay fill at		◄	— 4" DIA. HQ COREHOLE	2	100	100	
- 22	20.3ft BGS - horizontal fracture at 23.0ft BGS			55 				
- 24								
-26	- horizontal fracture at 27.8ft BGS							

Page 3 of 4

PROJECT NAME: INVESTIGATORY BEDROCK COREHOLES

PROJECT NUMBER: 013968

CLIENT: GENERAL MOTORS CORPORATION

LOCATION: BEDFORD, INDIANA

HOLE DESIGNATION: CH-52

DATE COMPLETED: August 28, 2012
DRILLING METHOD: HSA / HQ CORE

DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV. ft AMSL	COREHOLE	RUN NUMBER	CORE RECOVERY %	RQD %	
30	 horizontal fracture at 28.4ft BGS open stylolite at 28.9ft BGS medium grained at 29.4ft BGS 			3	100	100	
32	- stylolite at 32.1ft BGS- open stylolite at 33.0ft BGS						
34	- stylolite at 34.0ft BGS						
36	 - medium grained, high calcite content, gray at 35.0ft BGS - stylolite at 35.6ft BGS - horizontal fracture at 36.5ft BGS 						
38	- stylolite at 38.4ft BGS - horizontal fracture at 39.2ft BGS						
40	 horizontal fracture at 40.4ft BGS half-inch open stylolite at 40.9ft BGS fine grained at 41.0ft BGS 		4" DIA. HQ COREHOLE	4	100	99	
42	- stylolite at 43.3ft BGS						
44	- horizontal fracture at 44.0ft BGS - stylolite at 45.0ft BGS						
46	- Stylolite at 45.0ft BGS						
48	horizontal fracture at 47.9ft BGSstylolite at 48.0ft BGShorizontal fracture at 48.8ft BGS						
50	- stylolite at 50.3ft BGS			5	100	100	
52	horizontal fracture at 51.3ft BGShorizontal fracture at 51.8ft BGS						
	- horizontal fracture at 52.9ft BGS - brown in color at 53.0ft BGS						

Page 4 of 4

PROJECT NAME: INVESTIGATORY BEDROCK COREHOLES

PROJECT NUMBER: 013968

CLIENT: GENERAL MOTORS CORPORATION

LOCATION: BEDFORD, INDIANA

HOLE DESIGNATION: CH-52

DATE COMPLETED: August 28, 2012 DRILLING METHOD: HSA / HQ CORE

DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV. ft AMSL	COREHOLE	RUN	CORE RECOVERY %	RQD %
	- stylolite at 54.0ft BGS - horizontal fracture at 54.7ft BGS	613.3		ž	REC	ш
56	END OF BOREHOLE @ 55.0ft BGS					
58						
60						
62						
64						
66						
68						
70						
72						
74						
76						
78						
 <u>NC</u>	DTES: MEASURING POINT ELEVATIONS MAY CHANGE; F	REFER TO C	URRENT ELEVATION TABL	 .E		

Page 1 of 2

PROJECT NAME: INVESTIGATORY BEDROCK COREHOLES

PROJECT NUMBER: 013968

CLIENT: GENERAL MOTORS CORPORATION

LOCATION: BEDFORD, INDIANA

HOLE DESIGNATION: CH-60

DATE COMPLETED: September 10, 2012 DRILLING METHOD: HSA / HQ CORE

EPTH BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV. ft	COREHOLE			SAM	PLE
BGS	TOP OF CASIN	AMSL		NUMBER	INTERVAL	REC (ft)	'N' VALUE
	GROUND SURFAC	E 620.2		NON	INTE	RE(Ž Ž
2 4	CL-SILTY CLAY, with silt, firm, low plasticity, strong brown, moist END OF OVERBURDEN HOLE @ 7.0ft BGS		CEMENT / BENTONITE GROUT				
3							
10							
12							
14							
16							
18							
20							
22							
24							
	TES: MEASURING POINT ELEVATIONS MAY CHANGE						

Page 2 of 2

PROJECT NAME: INVESTIGATORY BEDROCK COREHOLES

PROJECT NUMBER: 013968

CLIENT: GENERAL MOTORS CORPORATION

LOCATION: BEDFORD, INDIANA

HOLE DESIGNATION: CH-60

DATE COMPLETED: September 10, 2012 DRILLING METHOD: HSA / HQ CORE

EPTH BGS	STRATIGRAPHIC DESCRIPTION & REMARK	S	ELEV. ft AMSL	COR	EHOLE	RUN	CORE RECOVERY %	RQD %	
3	LIMESTONE (SALEM FORMATION), fine grained, thin bedded, brown, high calcite content - set 4-inch steel casing at 9.0ft BGS		613.2		—— 4" DIA. STEEL CASING		~		
12	- stylolite at 11.1ft BGS- stylolite at 12.5ft BGS- light grey in color at 12.7ft BGS								
14	- stylolite at 13.9ft BGS - brown in color at 14.1ft BGS					1	100	100	
16	light grey in color at 16.2ft BGSstylolite at 18.3ft BGS								
20	- 1 feet brown in color then back to grey at 20.0ft BGS								
22	 stylolite at 22.1ft BGS half-inch open vug at 22.6ft BGS open stylolite at 22.8ft BGS open stylolite at 23.2ft BGS open stylolite at 24.2ft BGS 				4" DIA. HQ COREHOLE				
26	- 2-inch vuggy section at 24.6ft BGS - stylolite at 25.0ft BGS - 1-inch vuggy section at 25.8ft BGS - stylolite at 26.0ft BGS					2	100	100	
28	- open stylolite at 28.6ft BGS								
30	- stylolite at 29.8ft BGS END OF BOREHOLE @ 30.0ft BGS		590.2						

Appendix B

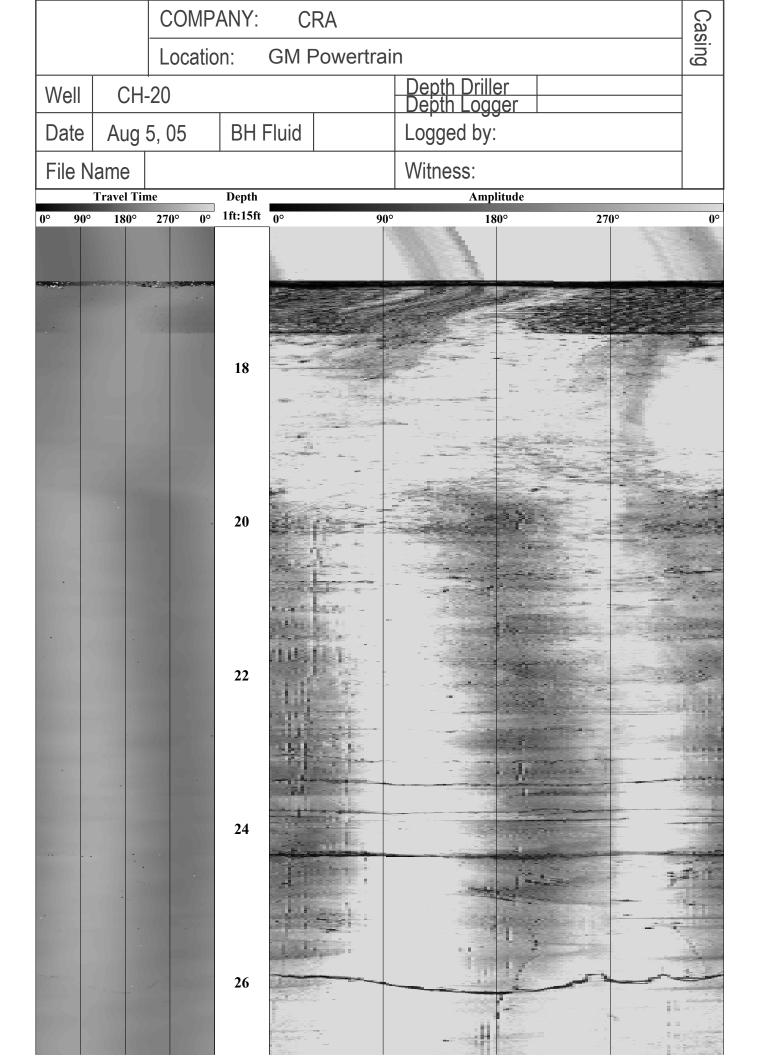
Bedrock Geotechnical Sample Results

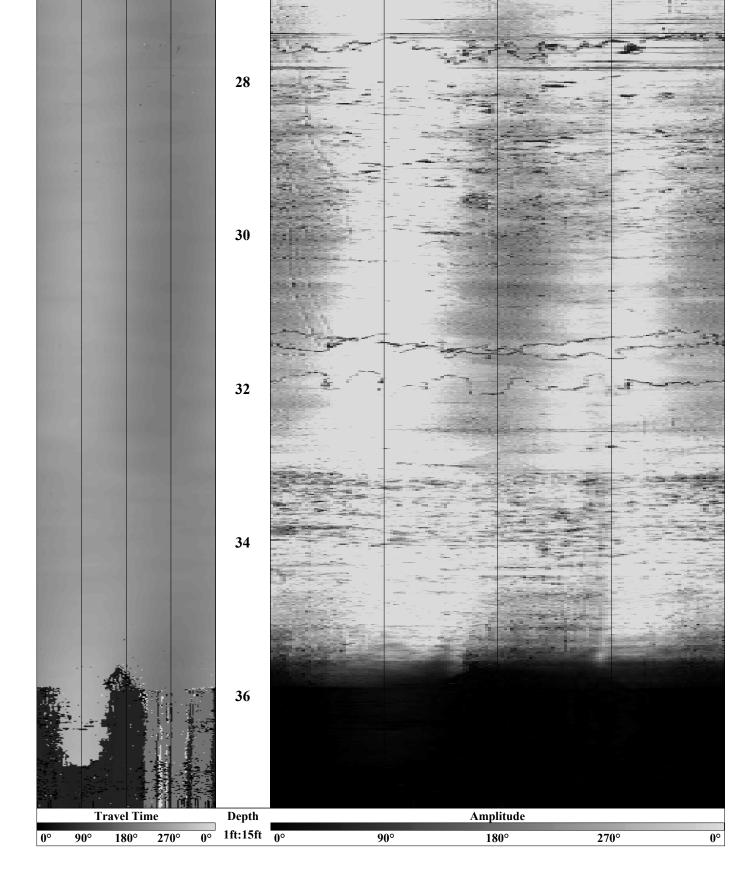
TABLE B.1

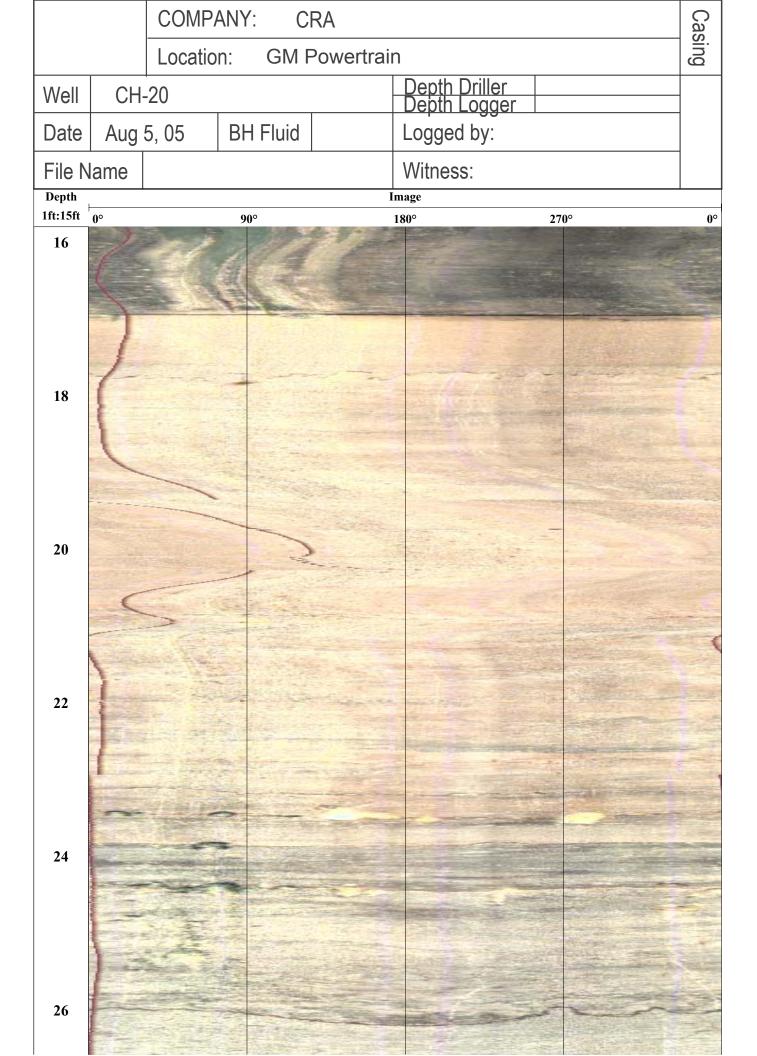
SUMMARY OF UNIAXIAL COMPRESSION TESTING GM CET BEDFORD FACILITY BEDFORD, INDIANA

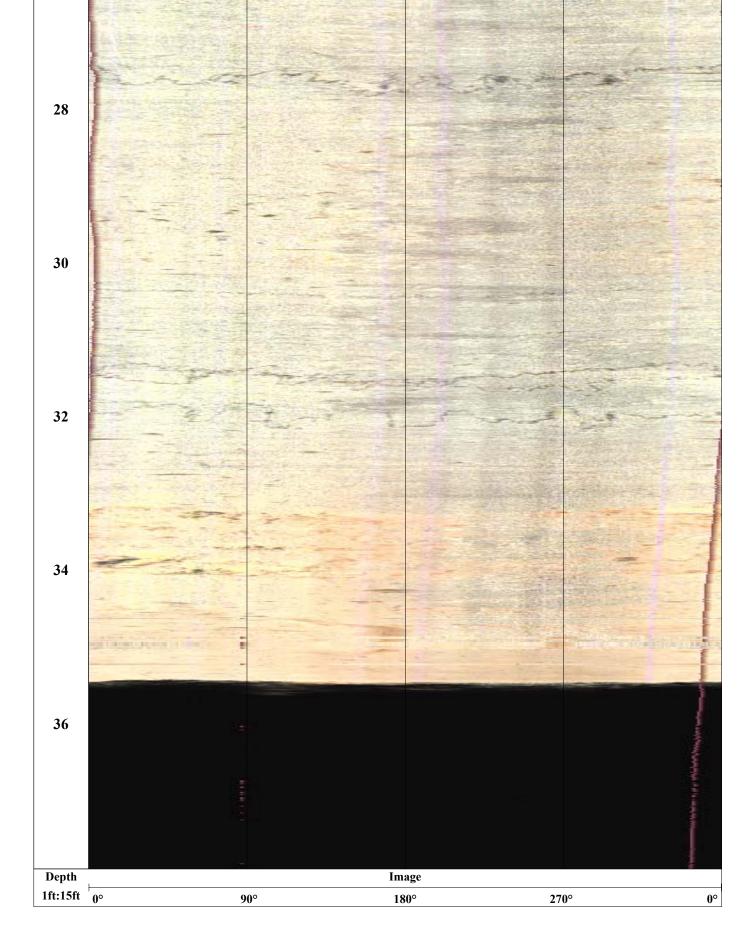
Sample Area:		East Plant Area						
Sample Location:		CH- 29	CH- 24	CH- 11	CH- 28	CH- 13A	CH- 9	CH- 15A
Sample ID:		RO-092205-KMV-1194	RO-092205-KMV-1195	RO-092205-KMV-1197	RO-092205-KMV-1200	RO-092205-KMV-1201	RO-092205-KMV-1205	RO-092205-KMV-1198
Sample Date:		9/22/05	9/22/05	9/22/05	9/22/05	9/22/05	9/22/05	9/22/05
Sample Depth:		32.0-32.8	12.5-13.3	9.3-10.3	23.0-23.8	15.7-16.5	15.5-16.3	23.1-23.9
Parameters	Units							
Compressive Strength	MPa	48.8	90.1	108.0	71.9	98.0	45.8	67.8

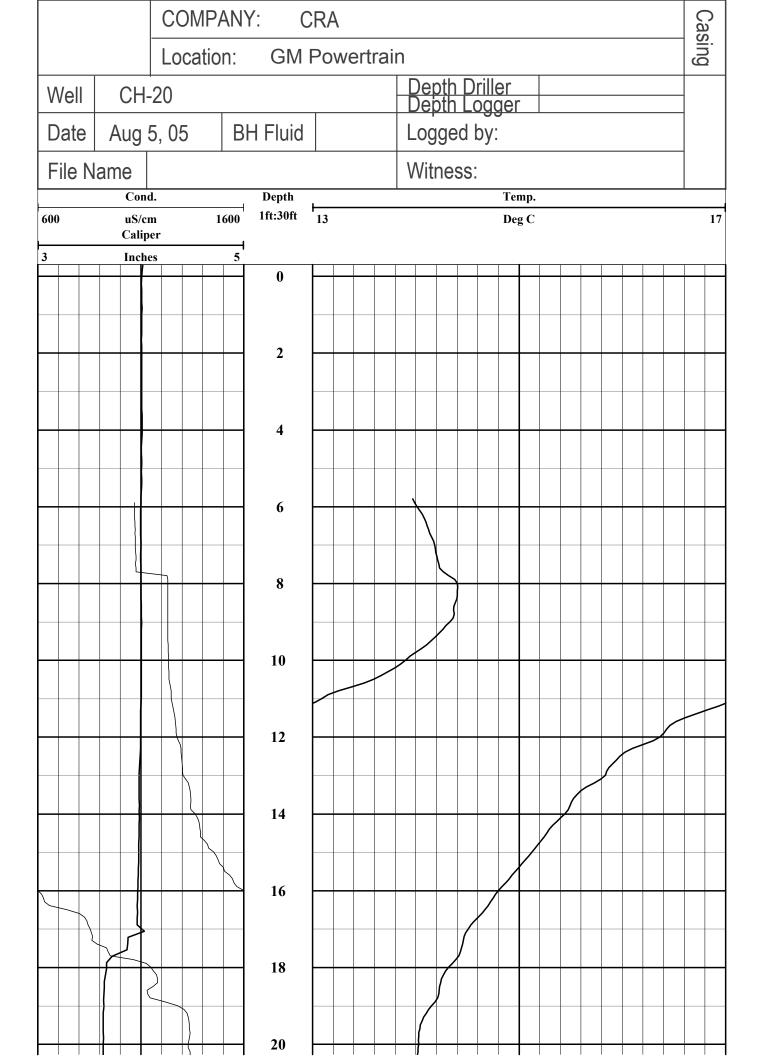
TABLE B.1

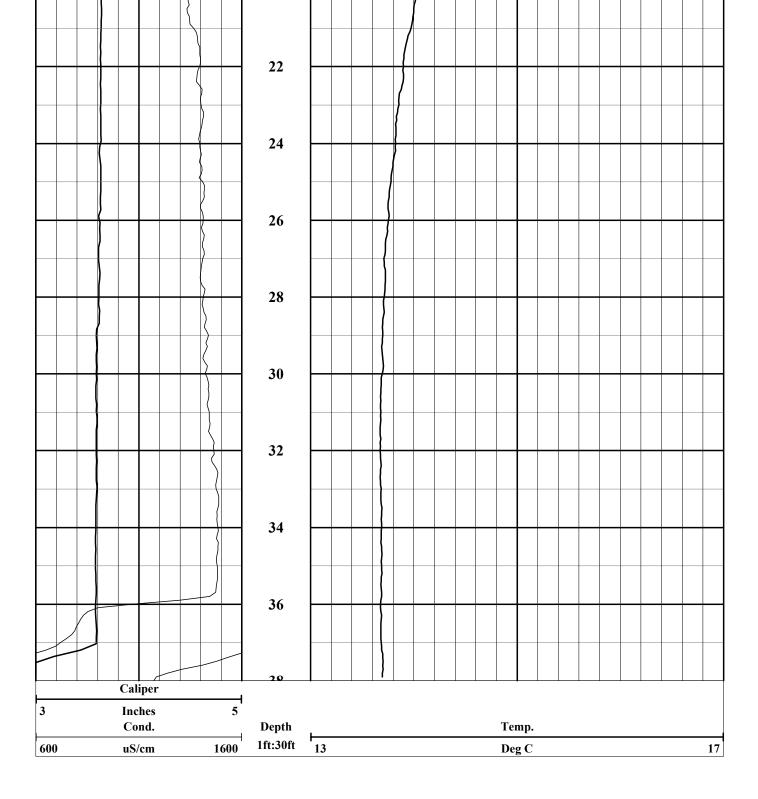

SUMMARY OF UNIAXIAL COMPRESSION TESTING GM CET BEDFORD FACILITY BEDFORD, INDIANA

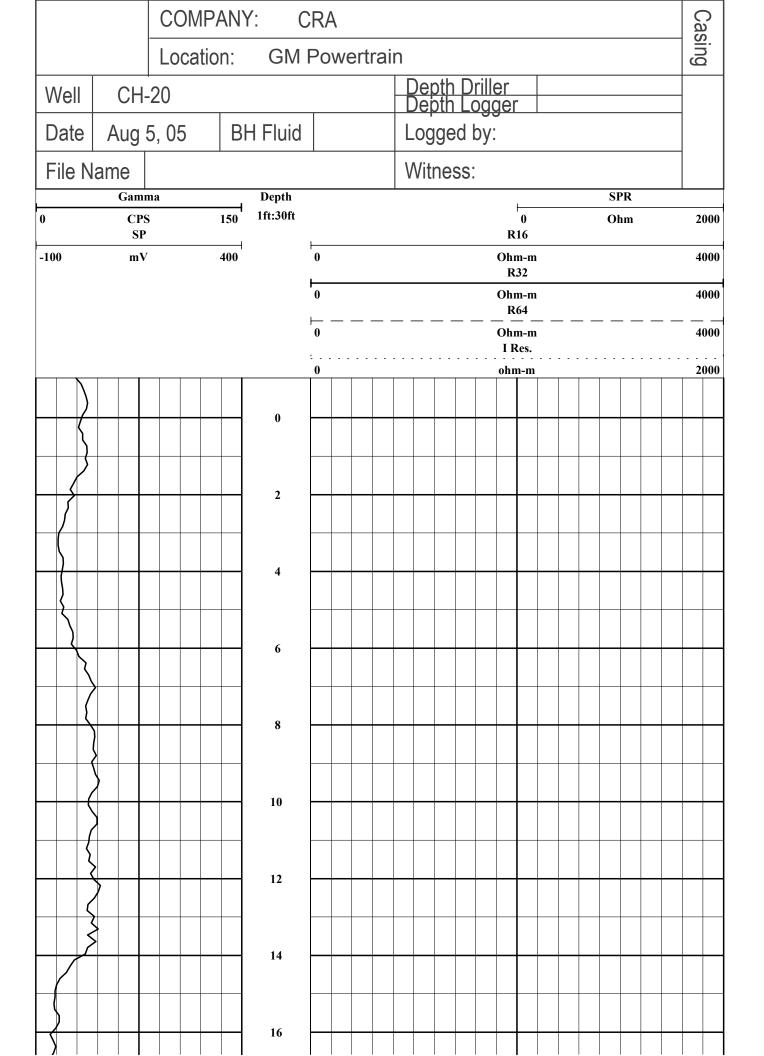

Sample Area:		East Plant Area						
Sample Location:		CH- 32	CH- 28	CH- 5	CH- 17A	CH- 3	CH- 1B	CH- 3A
Sample ID:		RO-092205-KMV-1199	RO-092205-KMV-1200	RO-092205-KMV-1203	RO-092205-KMV-1204	RO-092205-KMV-1206	RO-092205-KMV-1207	RO-092205-KMV-1208
Sample Date:		9/22/05	9/22/05	9/22/05	9/22/05	9/22/05	9/22/05	9/22/05
Sample Depth:		11.4-12.2	23.0-23.8	29.4-30.2	27.6-28.4	9.5-10.3	33.0-33.7	38.7-39.5
Parameters	Units							
Compressive Strength	MPa	110.2	71.9	147.0	63.1	45.3	166.5	68.4

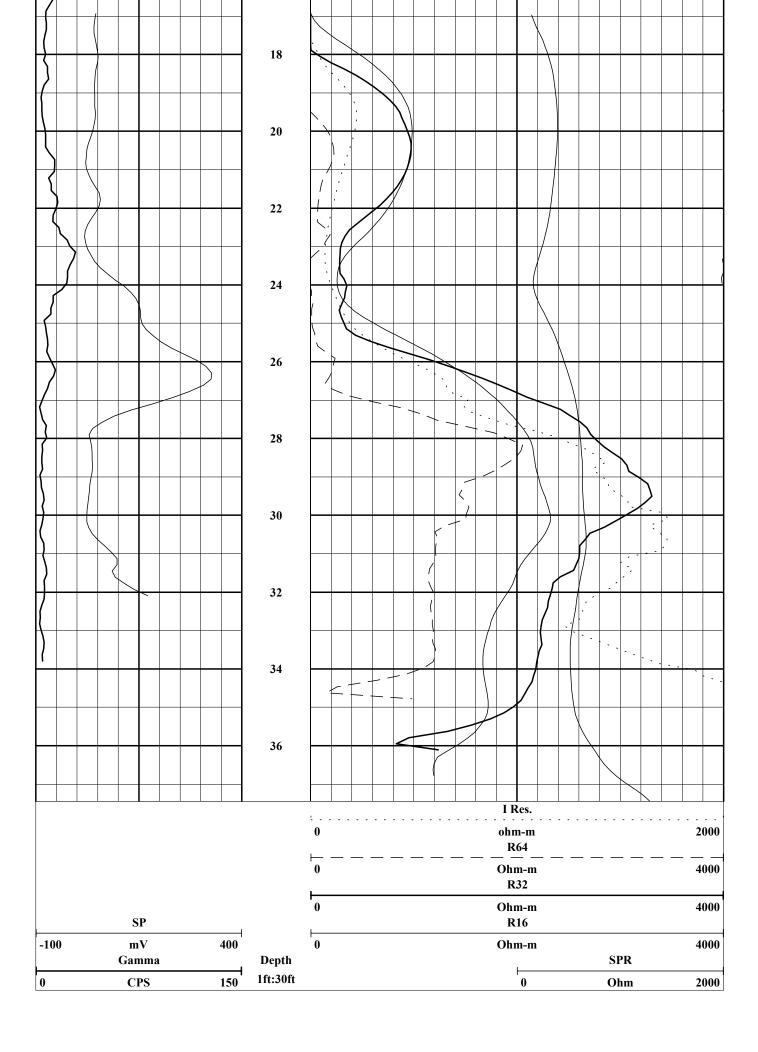

Appendix C

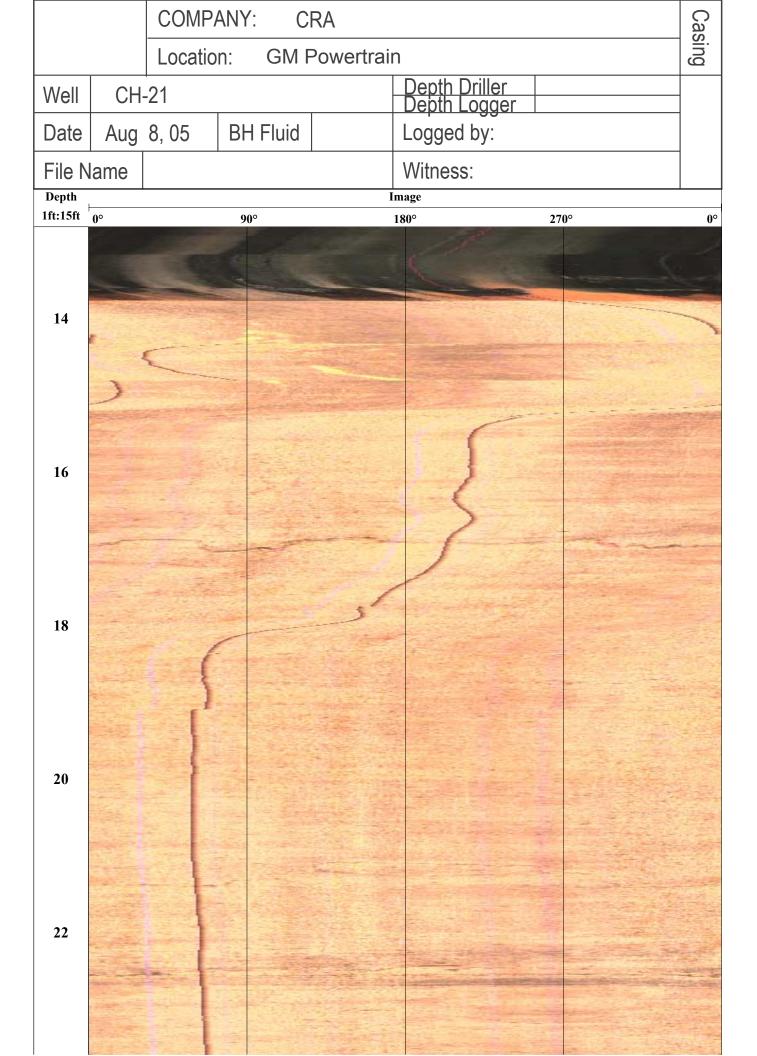

Downhole Geophysical Logging

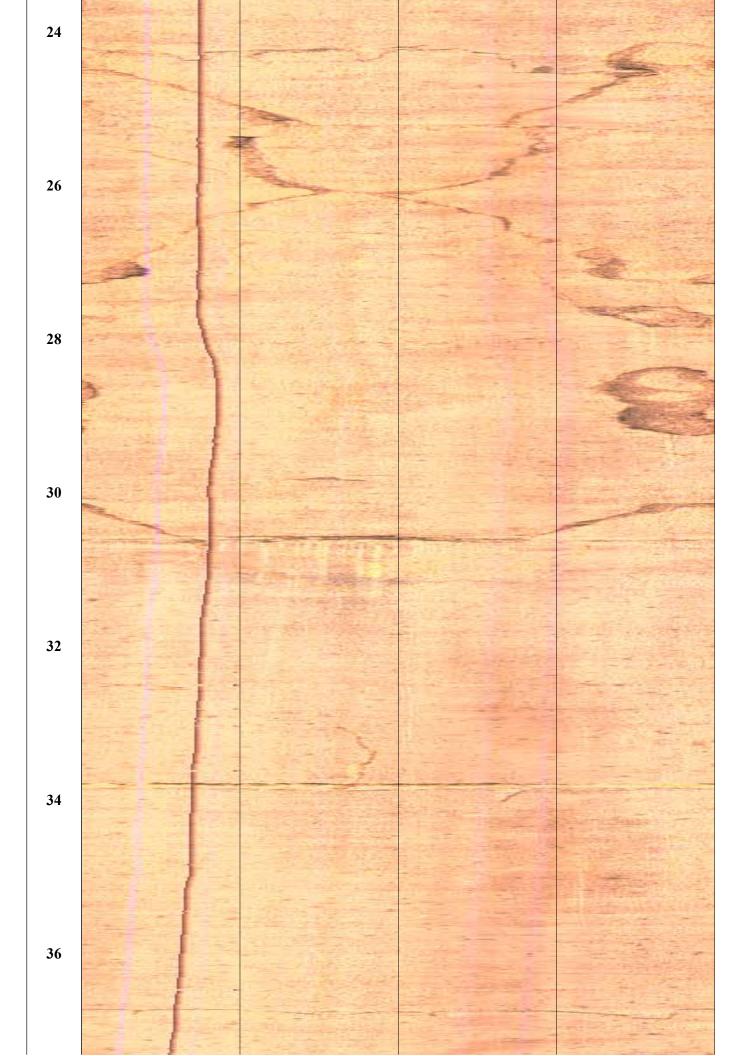


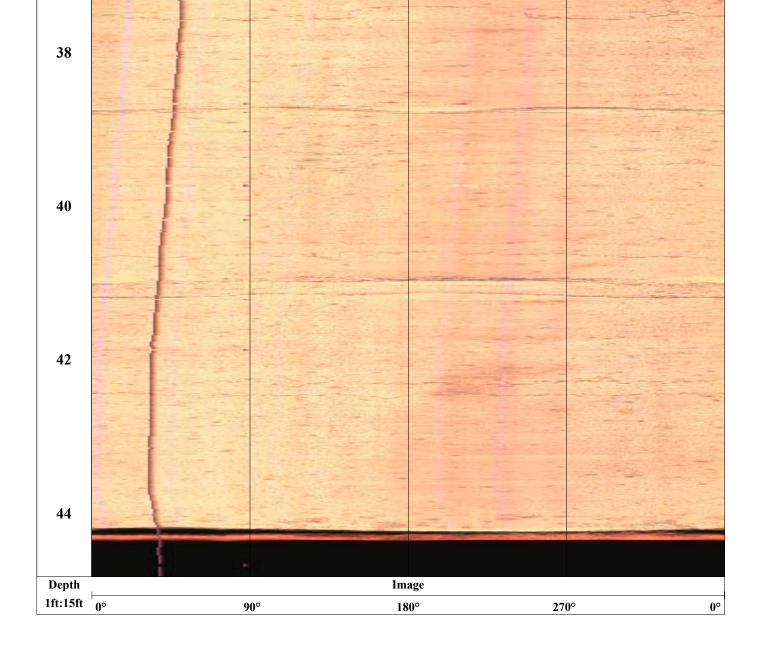


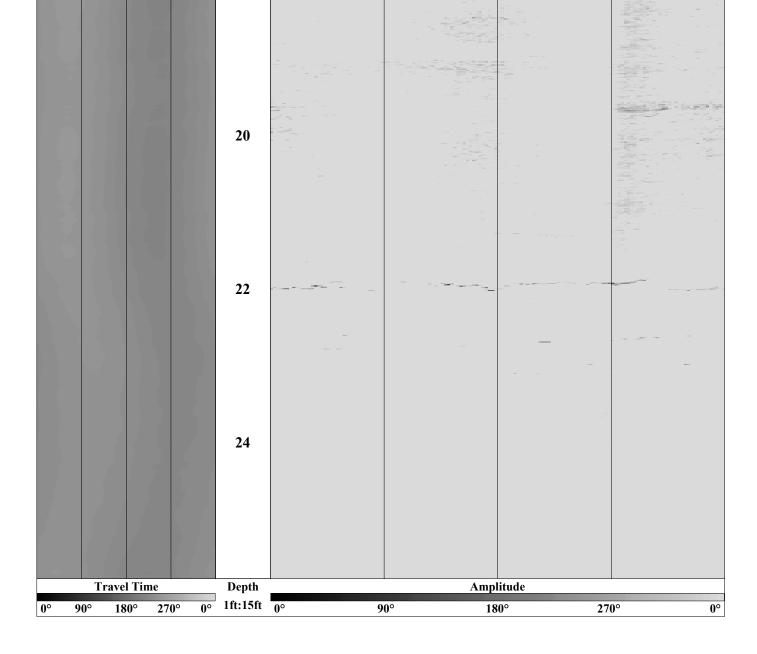


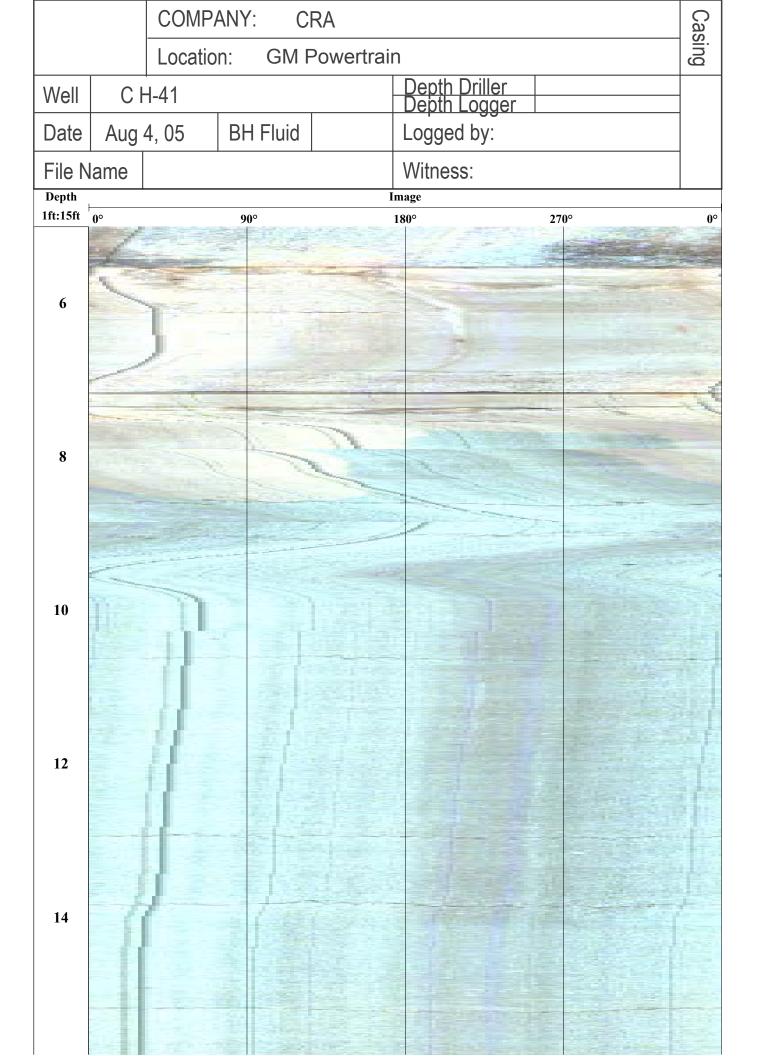


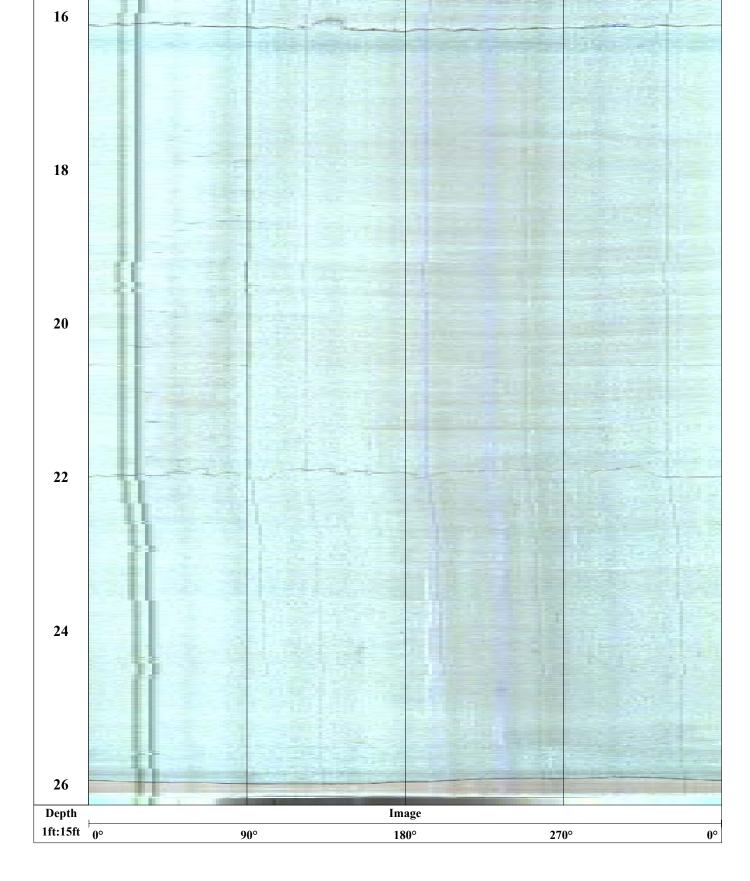


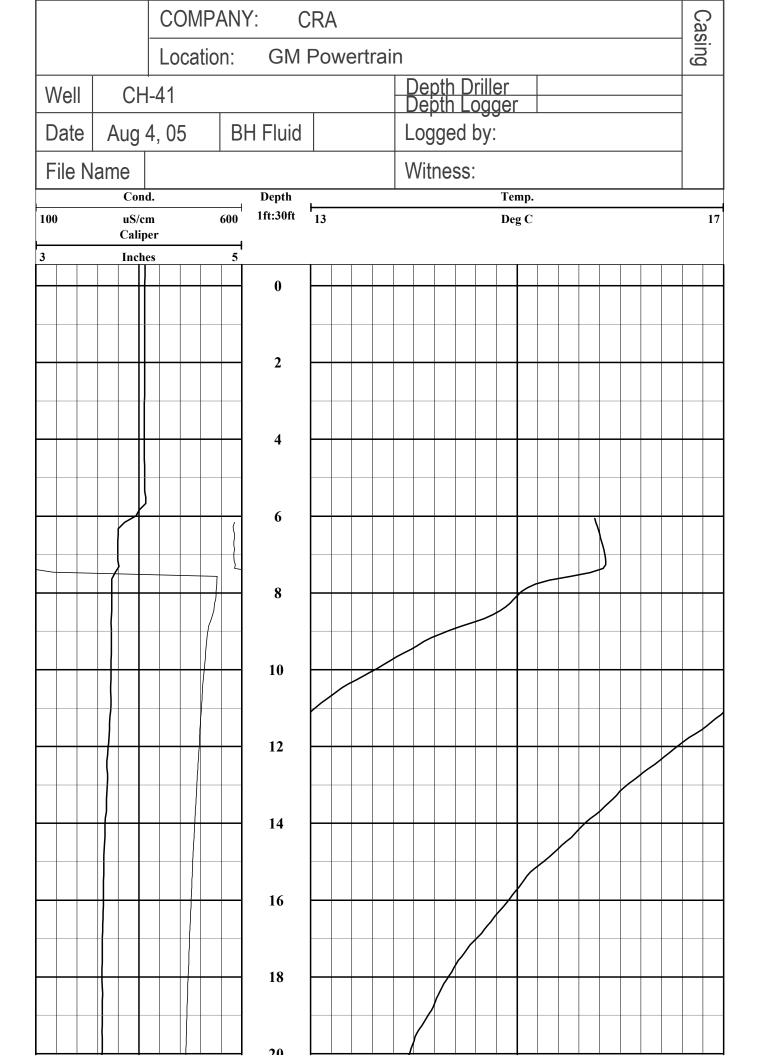


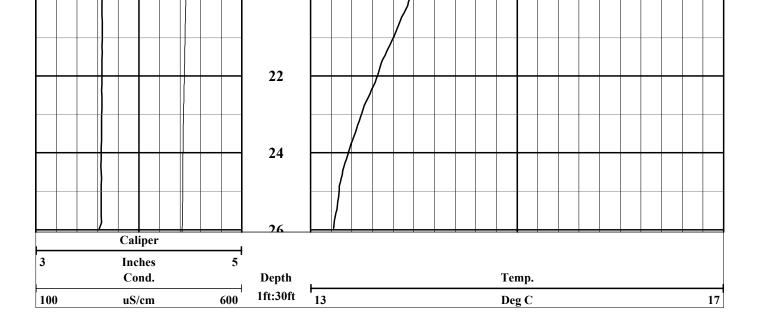


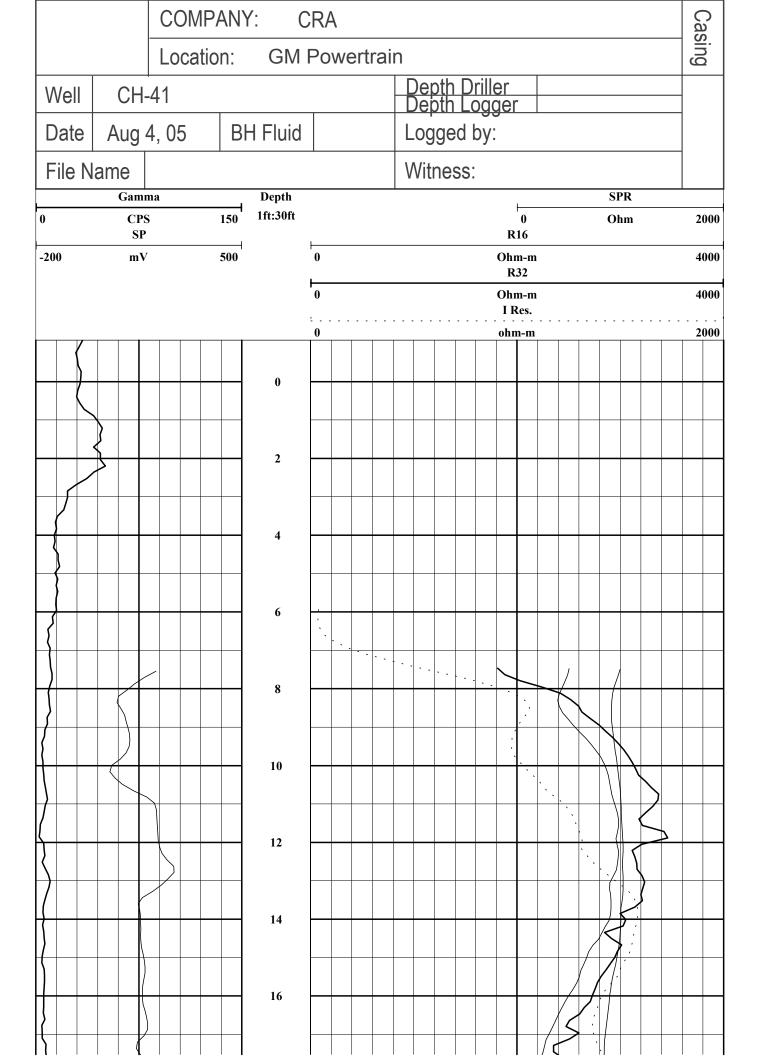


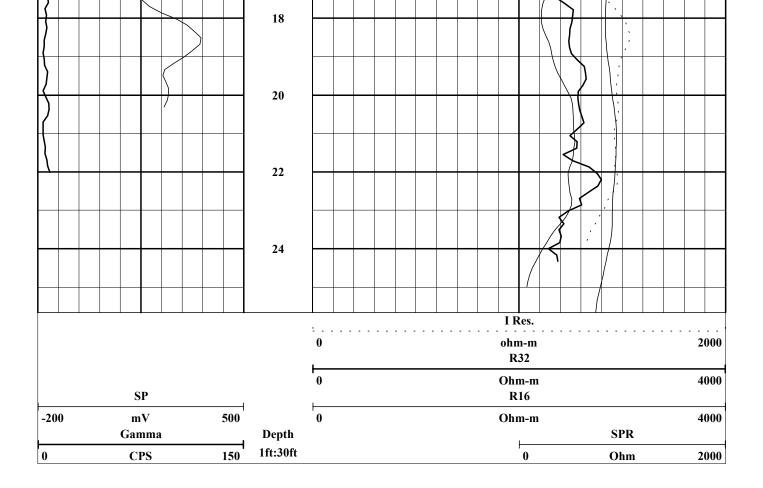


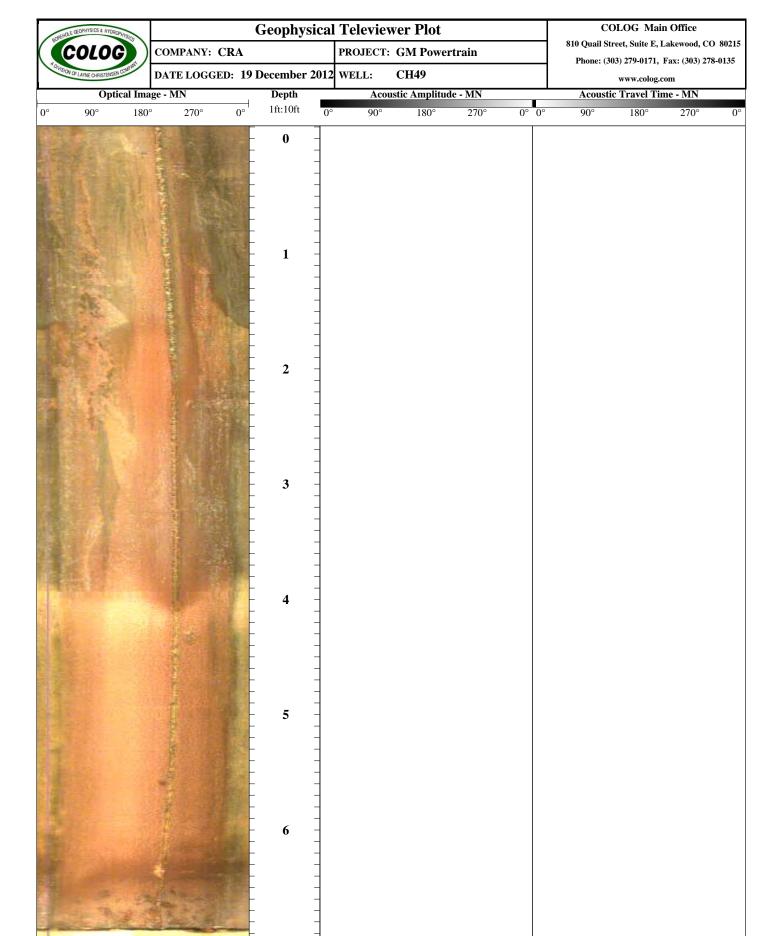


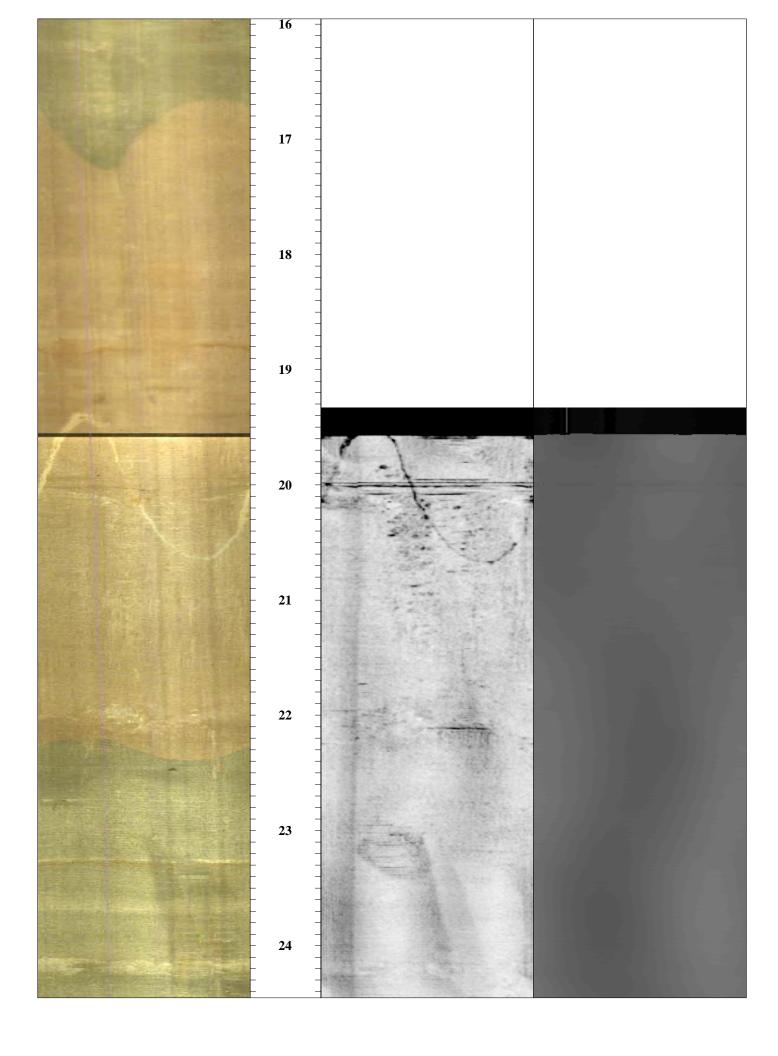


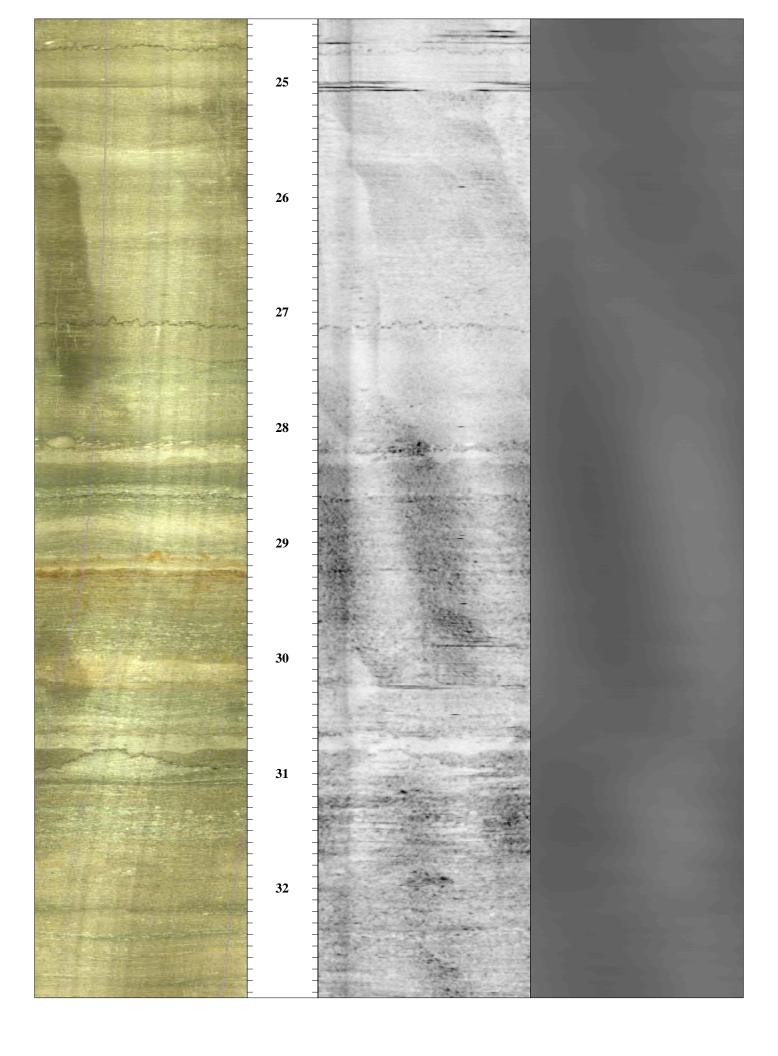

		COMP	ANY:	Cl	RA						Ca
		Locatio	n:	GM Powertrain							Casing
Well	CH	l-41				Depth Driller Depth Logger					
Date	Aug	Aug 4, 05 BH Fluid			Logg	ged by:					
File N	- 1					Witn					
0° 90°	Travel Tin	270° 0°	Depth 1ft:15ft	00	0	00°		litude 80°	27	no	0°
	100	270 0									
			8								
		48	10				- <u>-</u>			- <u>-</u>	_
				 -			- -	-		nu	
			12								
			14								
			16								
			18								

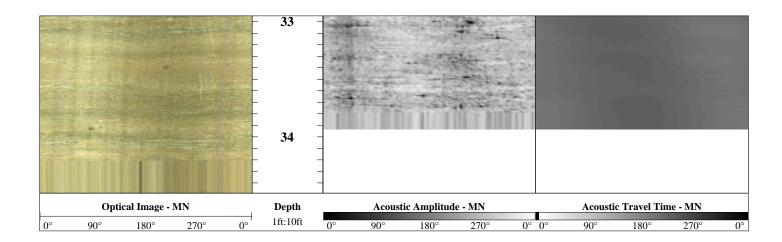


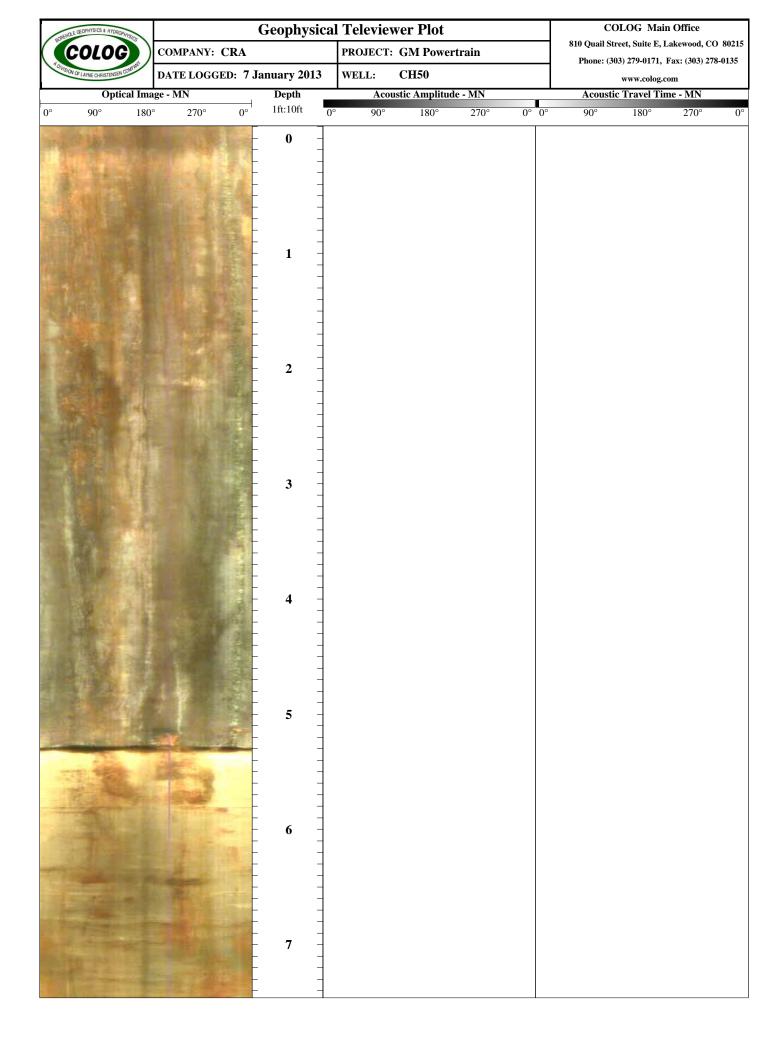


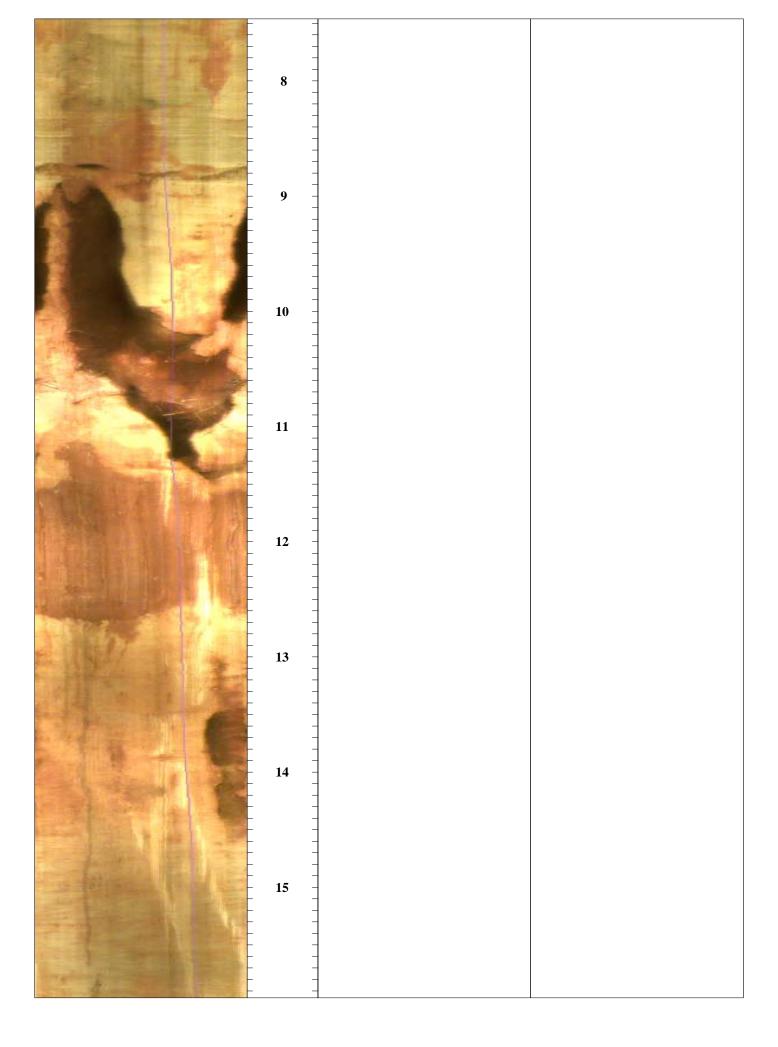


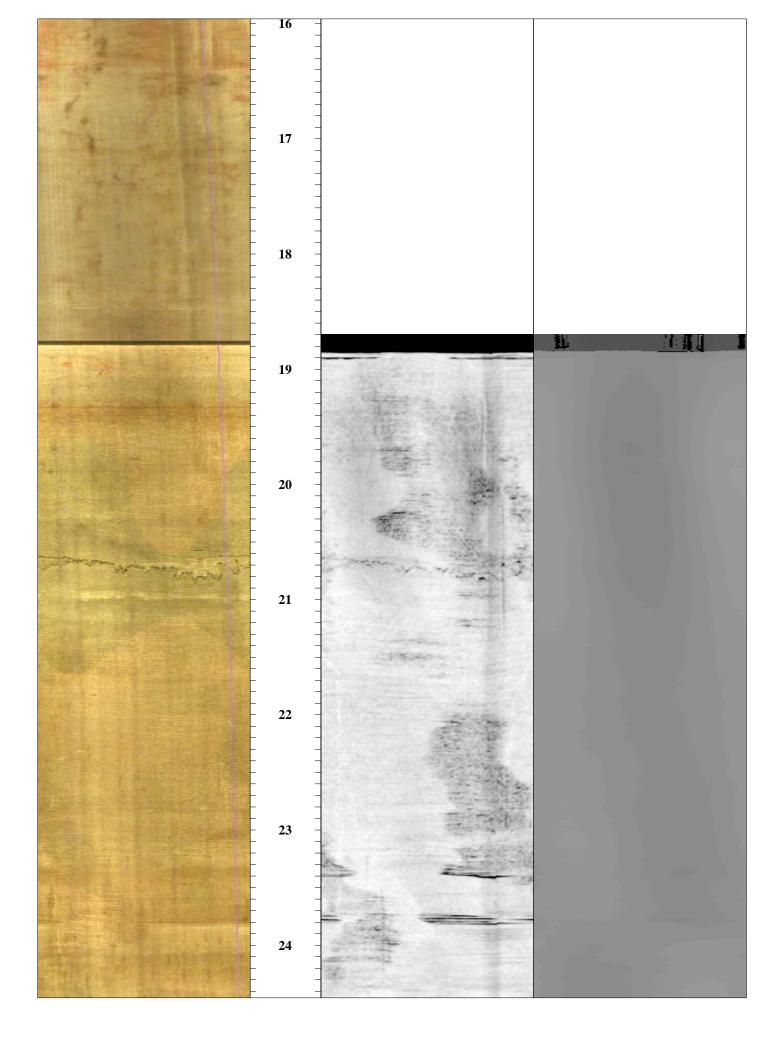


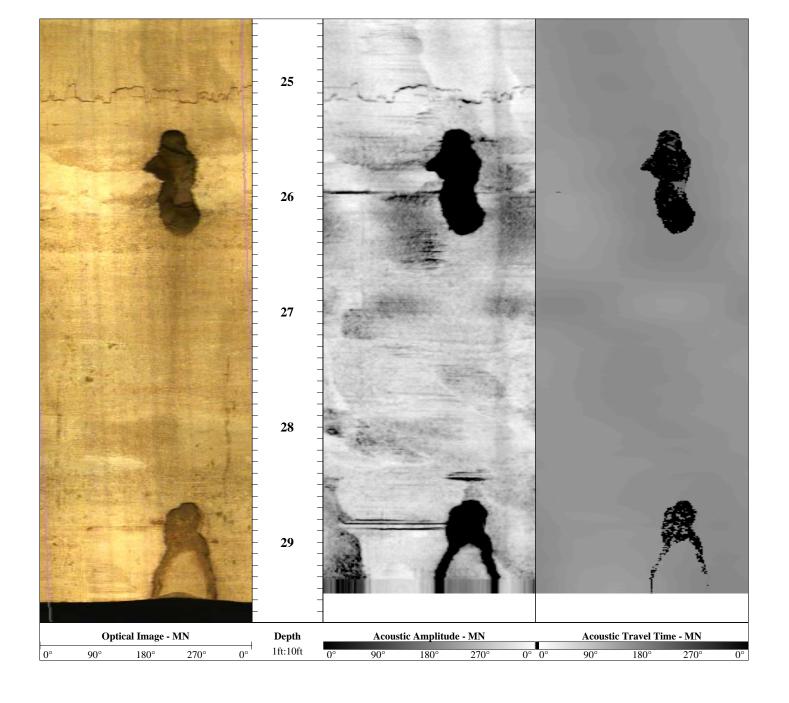



Geophysical St			Summary Pl	ot		COLOG Main Office		
COLOG) СОМР	COMPANY: CRA PI			Powertrain		810 Quail Street, Suite E, Lakewood, CO 80215	
DATE LOGGED: 19 December 2012 W			WELL: CH49)		Phone: (303) 279-0171, Fax: (303) 278-0135 www.colog.com		
3-Arm Caliper				Depth		Temperature		
			7 1ft:55ft	13	'C Conductivity	16		
Natural Gamma 0 CPS 60				60	600	uS/cm	700	
0	_	Crs		00		us/cm	700	
	<u> </u>			0				
	}							
	(\					
	}							
		_						
	}							
				5				
				-				
-	}			_				
\rightarrow	-			_				
<u> </u>	}			_				
				10				
	}			_				
3								
	}							
7	}			15				
	- 1			15				
7								
\rightarrow						}	-	
				-		-		
-}	}-			20				
	}			_				
\rightarrow				_				
	}_			_				
				_				
)				25				
\rightarrow								
_				_				
)	}			_				
						/Ś		
<u> </u>				30				
	}							
					/			
	Natur	ral Gamma				Conductivity		
0					600	uS/cm	700	
3-Arm Caliper			Depth		Temperature			
2		in		7 1ft:55ft	13	'C	16	

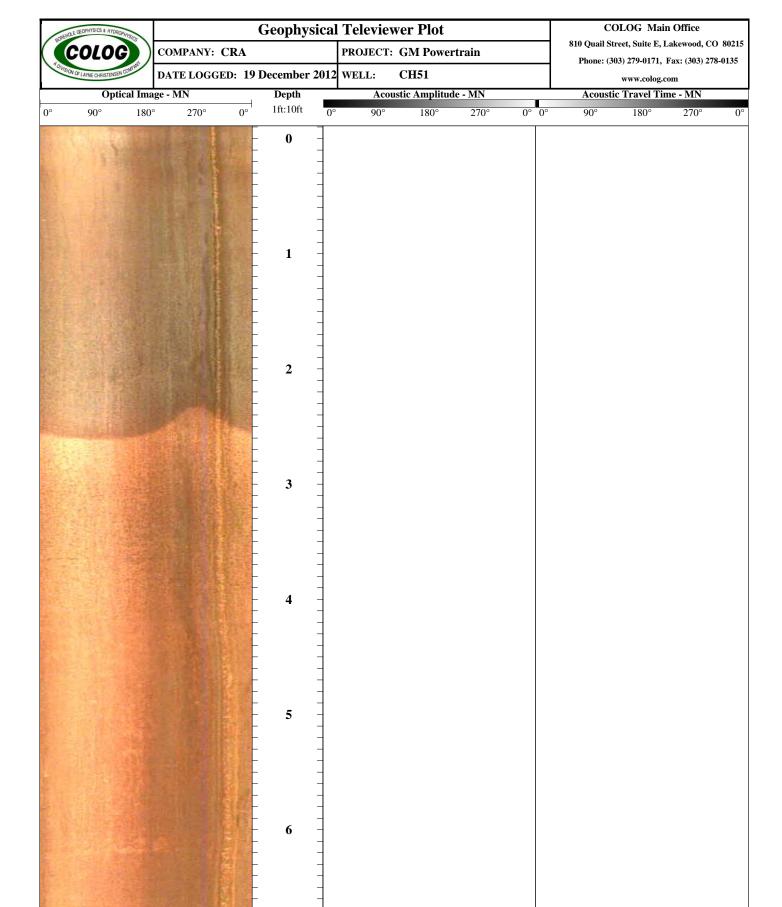

The second secon	_
	_
	_
	- 8
The state of the s	-
	_
	_
	_
and the later of the second second	_
	_
	_
A POST OF THE PARTY OF THE PART	_
STATE OF THE PARTY	
THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER.	
	- 9 -
THE RESERVE OF THE PERSON NAMED IN	
A STATE OF THE PARTY OF THE PAR	
The second section	
THE RESERVE OF THE PARTY OF THE	
The second secon	
Company of the second	
THE RESERVE TO SERVE THE PARTY OF THE PARTY	- 10 -
A STATE OF THE PARTY OF THE PAR	
the last transfer to	
The second second	
The second second	
THE RESERVE OF THE PERSON NAMED IN	
MILE THE PROPERTY AND ADDRESS OF THE PARTY AND	- 11 -
THE RESERVE OF THE PERSON NAMED IN	
The second secon	
CONTRACTOR OF THE PARTY OF THE	
THE REPORT OF THE PERSON NAMED IN	
CONTRACTOR OF THE PERSON NAMED IN	
and the second s	_
	- 12 -
	14
THE RESIDENCE TO SERVICE TO	_
THE RESERVE OF THE PARTY OF THE	_
BURN OF THE REAL PROPERTY.	_
Maria Carlo	
The same of the sa	
STATE OF THE PARTY	
SECTION AND DESIGNATION OF THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED I	- 13
THE RESERVE THE PARTY OF THE PA	
Marine Street Workship .	
Maria Line Sales and Sales	
A STATE OF THE PARTY OF THE PAR	
Marine of the Control	
THE RESERVE OF THE PARTY OF THE	
A STATE OF THE PARTY OF THE PAR	
	- 14 -
STATE OF THE PARTY OF THE PARTY.	
STATE OF THE OWNER, TH	_
THE RESERVE TO STATE OF THE PARTY OF THE PAR	_
	_
AND THE RESERVE TO THE PARTY OF	_
STATE OF THE PARTY	
THE RESERVE TO SERVE THE PARTY OF THE PARTY	
	- 15 -
STATE OF THE OWNER, THE PARTY NAMED IN	

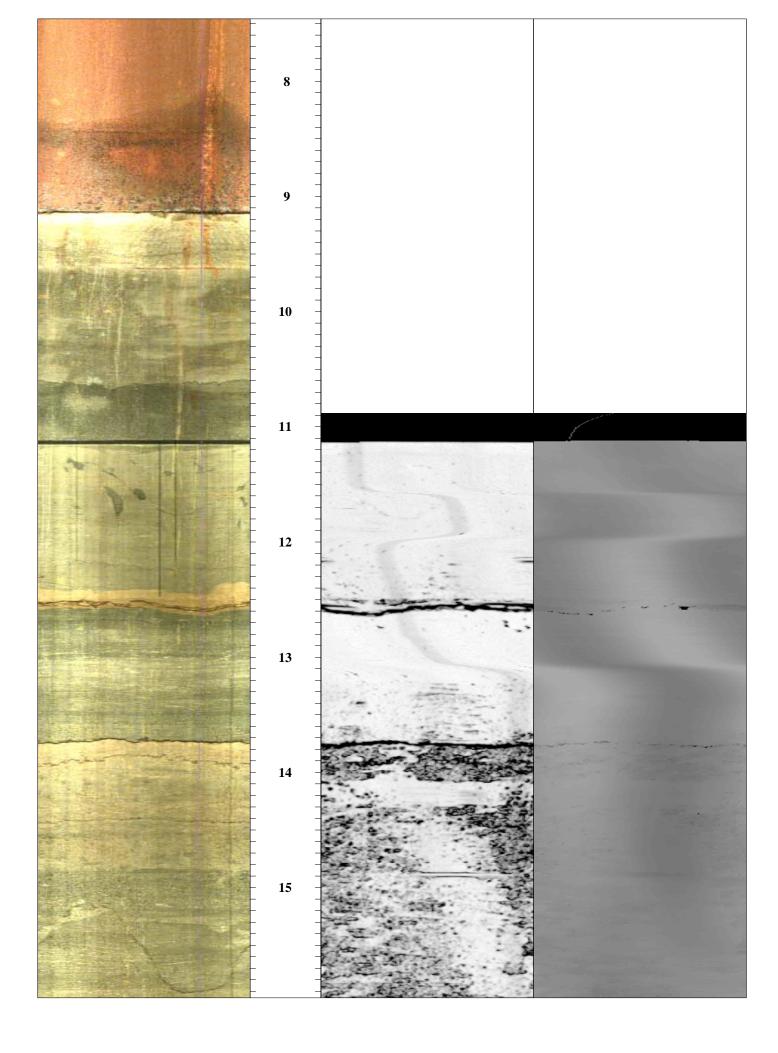


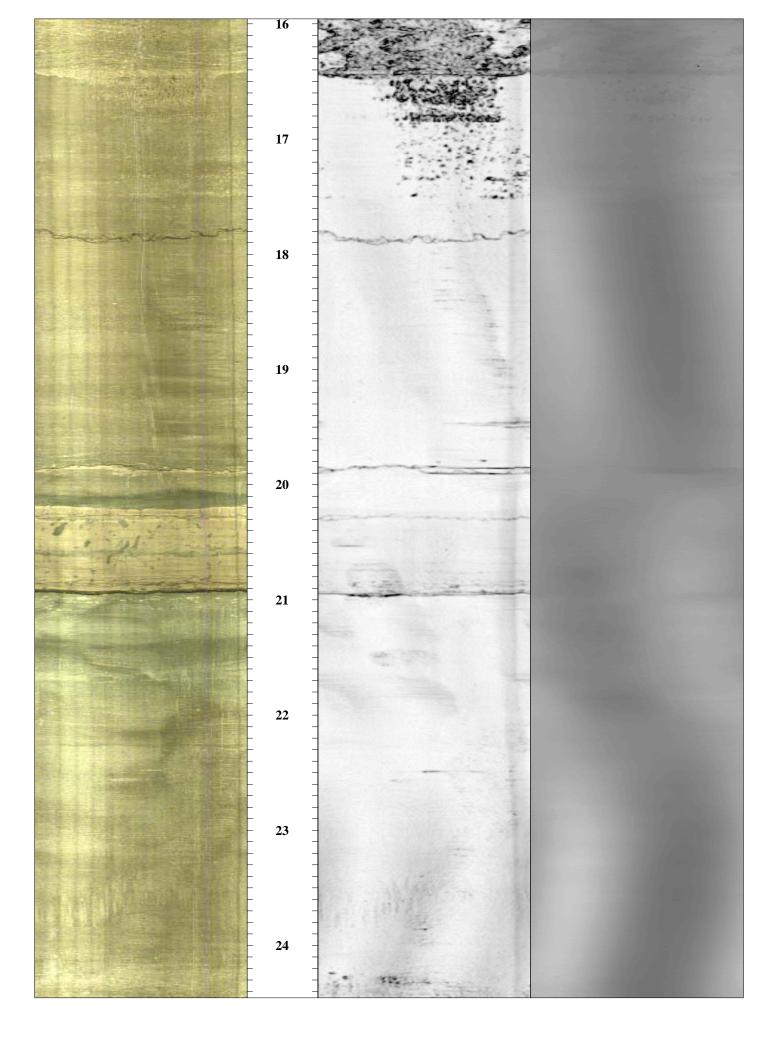


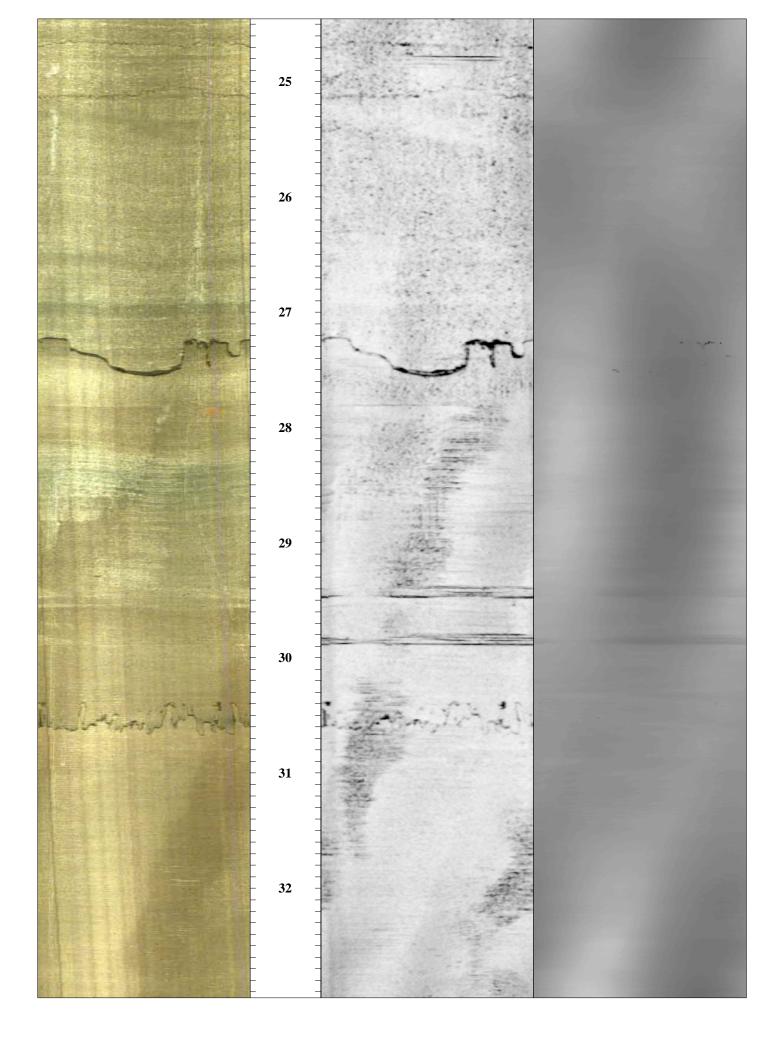


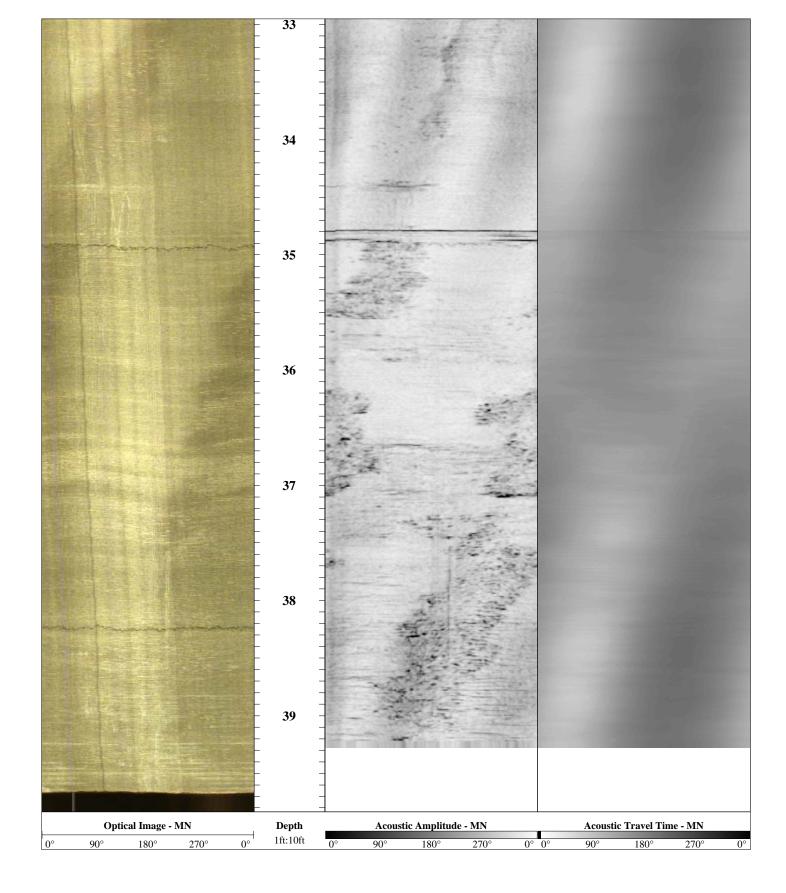
ROREHOLE GEOPHYSICS & HYDROPHYSIC	Geophysical S				Summary Plot			COLOG Main Office		
COLOG COMPANY: CRA			PROJECT: GM Powertrain				810 Quail Street, Suite E, Lakewood, CO 80215 Phone: (303) 279-0171, Fax: (303) 278-0135			
			WEI	WELL: CH50			www.colog.com			
3-Arm Caliper			_	Depth		Tem	perature	15		
2 in 7 Natural Gamma				7	1ft:50ft	10 'C Conductivity				
			50	50	700	υ	S/cm	900		
	<i>>></i>									
					0					
			\leftarrow							
	(
	}									
	- 			\dashv	5					
	{			_						
$ \leftarrow $										
				\dashv						
				_	10					
										
				_	15					
	}									
))									
						_				
	-{						\ \ <u>\</u>			
	{				20		2			
(}				20					
							\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			
							 	\		
	}			_						
<i></i>	{				25					
>					23			}		
5										
	*			\dashv				+} /		
				\dashv				+ \		
]	20					
<u> </u>		Gamma		$\overline{}$				luctivity		
0 CPS 50 3-Arm Caliper			50	Depth	700	U	S/cm perature	900		
2				7	1ft:50ft	Temperature 10 'C 1				
4	1	n		1	510	10		'C	15	

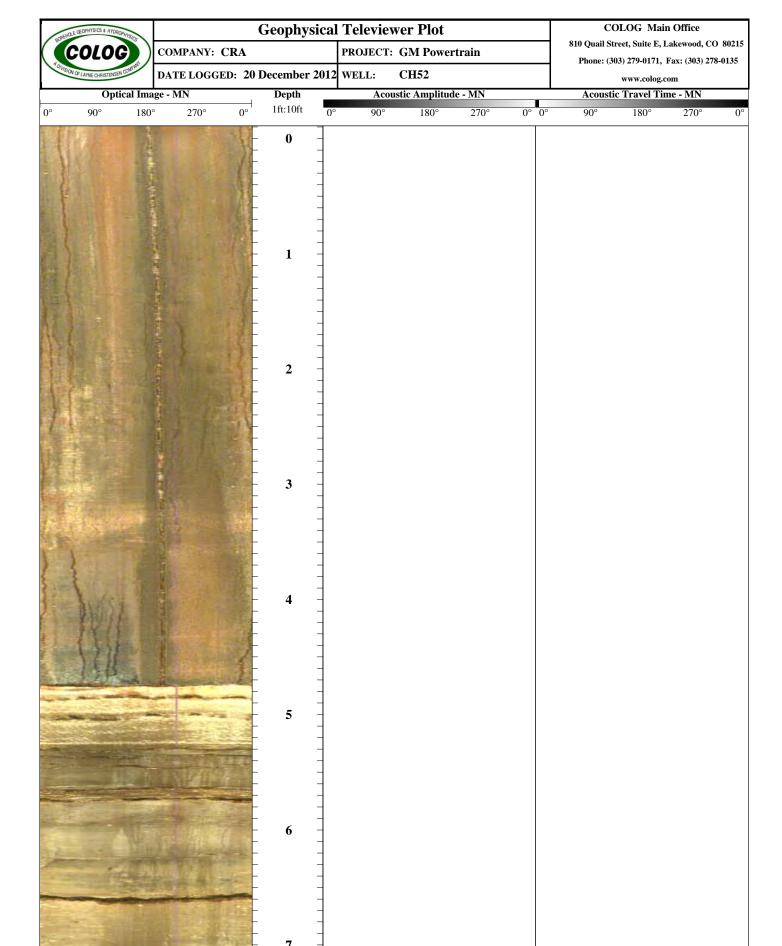


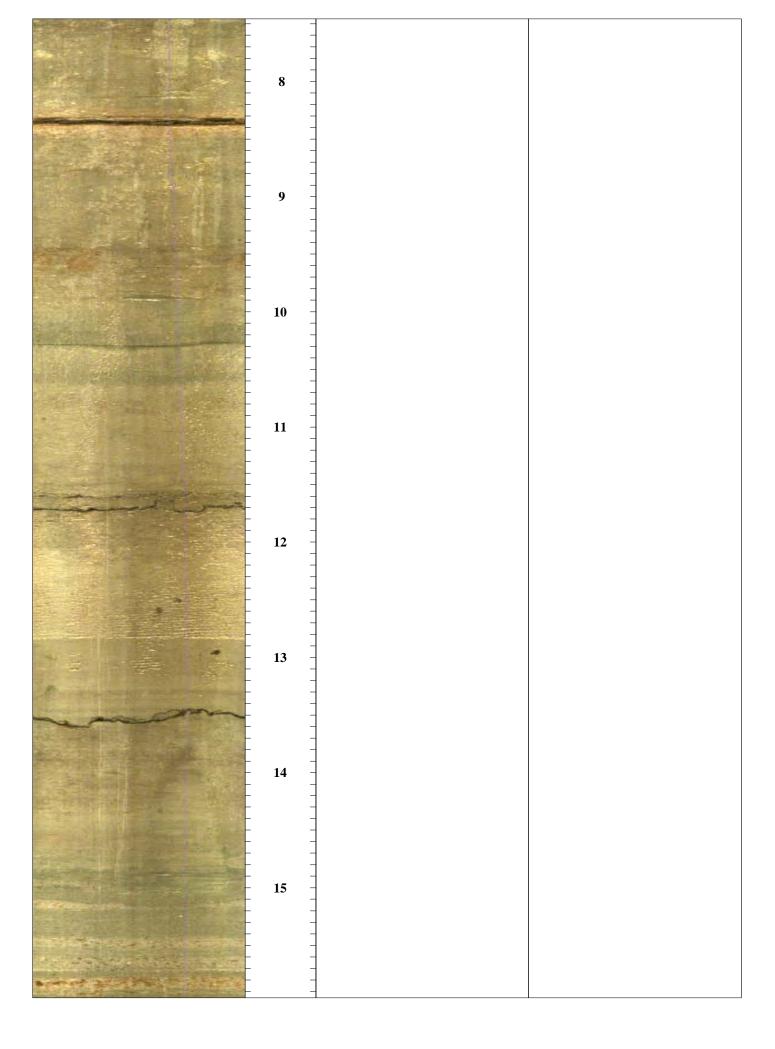


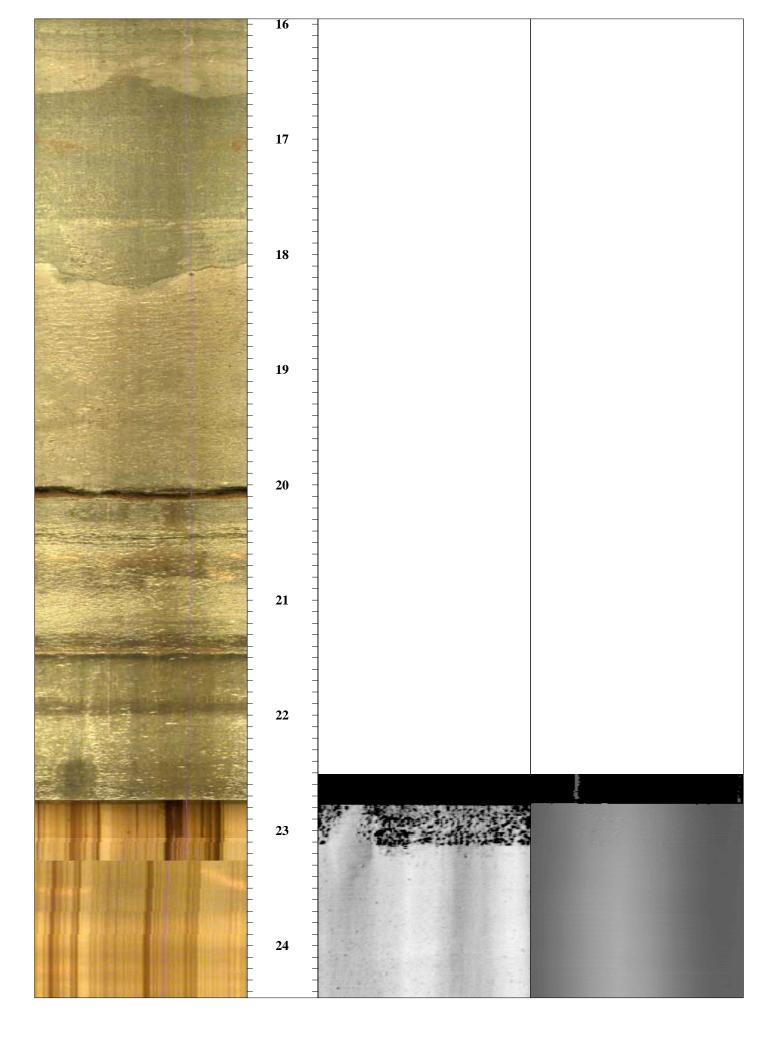


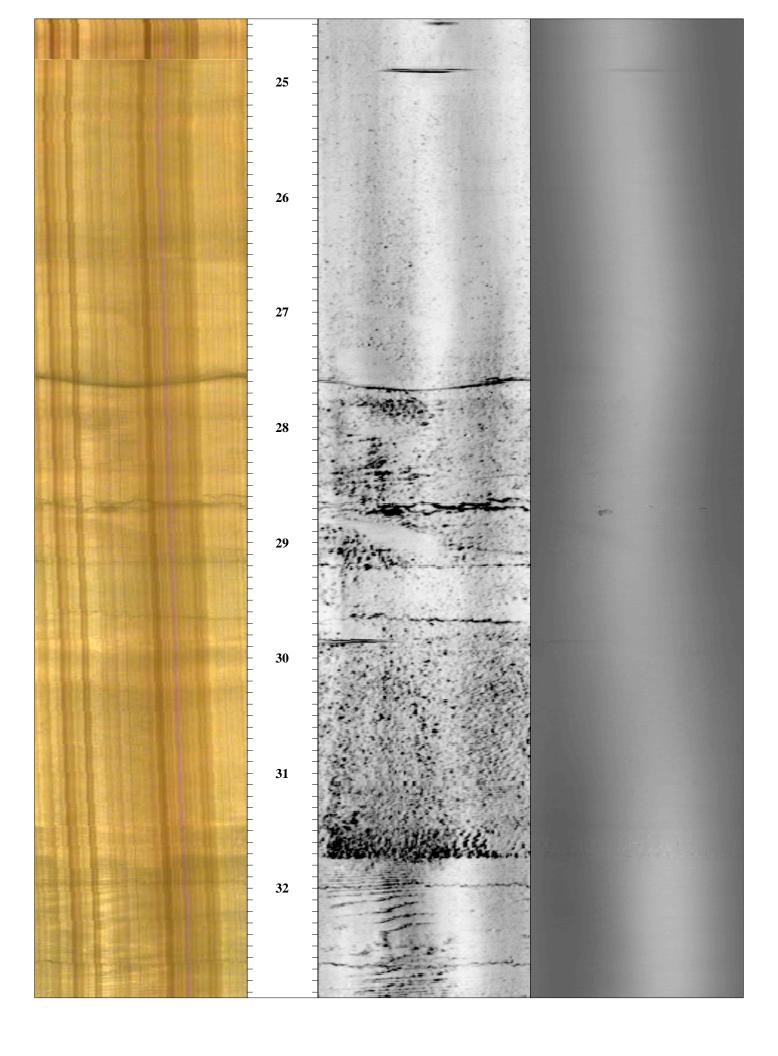


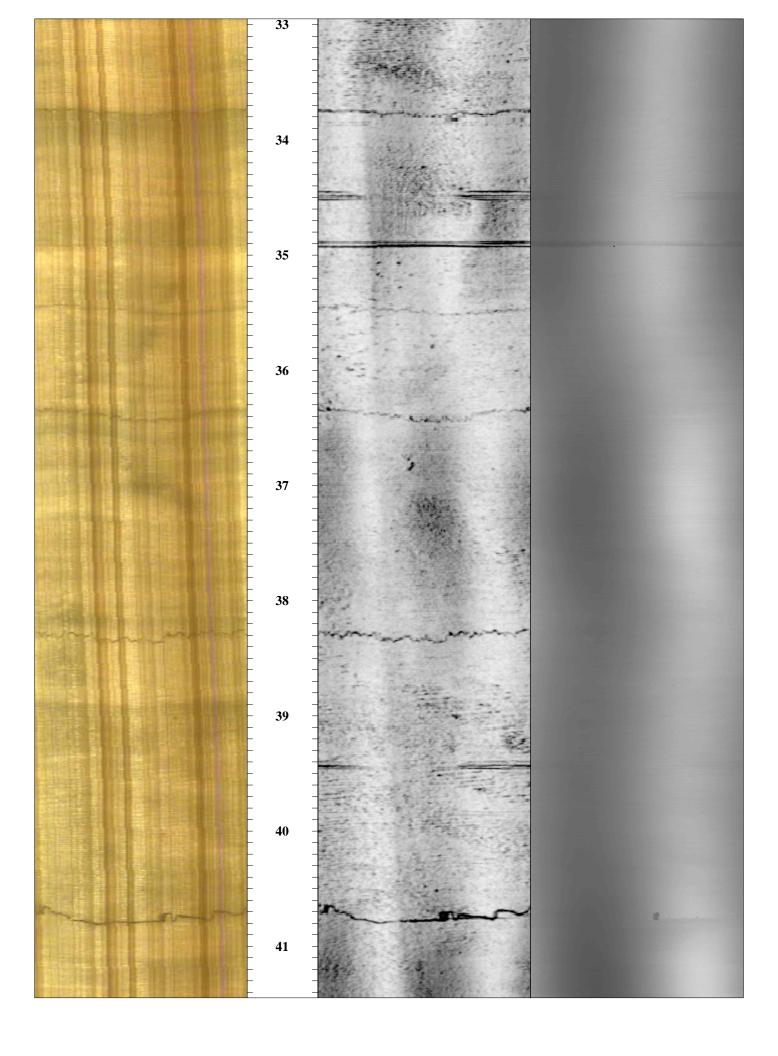

Geophysical Summary Plot COLOG Main Office 810 Quail Street, Suite E, Lakewood, CO 80215 COMPANY: CRA PROJECT: GM Powertrain Phone: (303) 279-0171, Fax: (303) 278-0135 DATE LOGGED: 19 December 2012 WELL: **CH51** www.colog.com 3-Arm Caliper Depth Temperature 13 1ft:65ft Conductivity Natural Gamma 460 100 500 CPS uS/cm 0 5 10 15 **20** 25 **30** 35 Natural Gamma Conductivity 460 100 CPS uS/cm 500 3-Arm Caliper Depth Temperature 13 1ft:65ft 'C

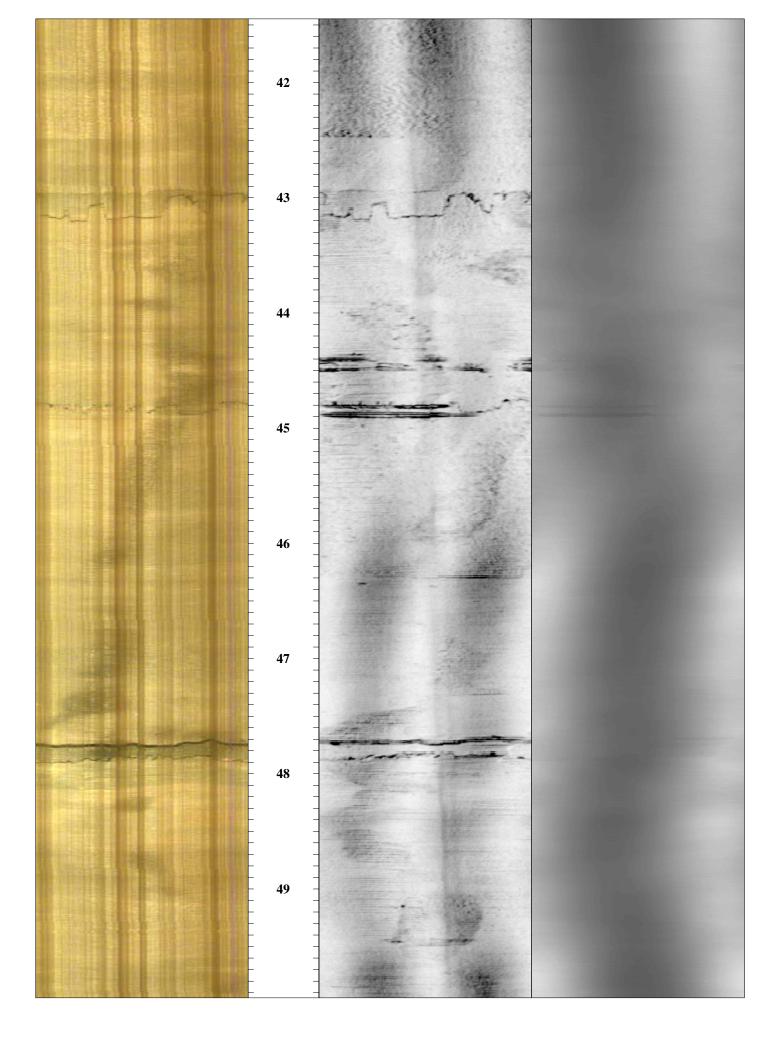


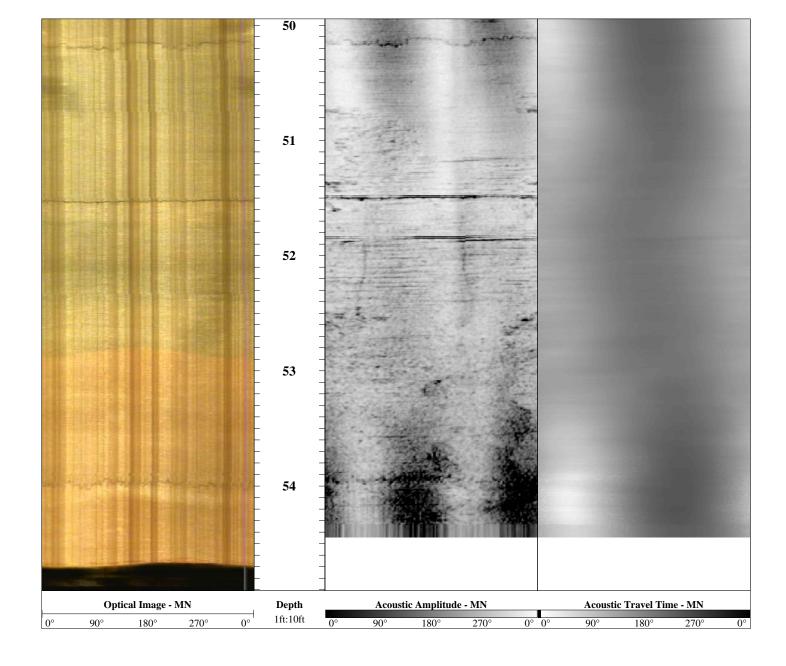


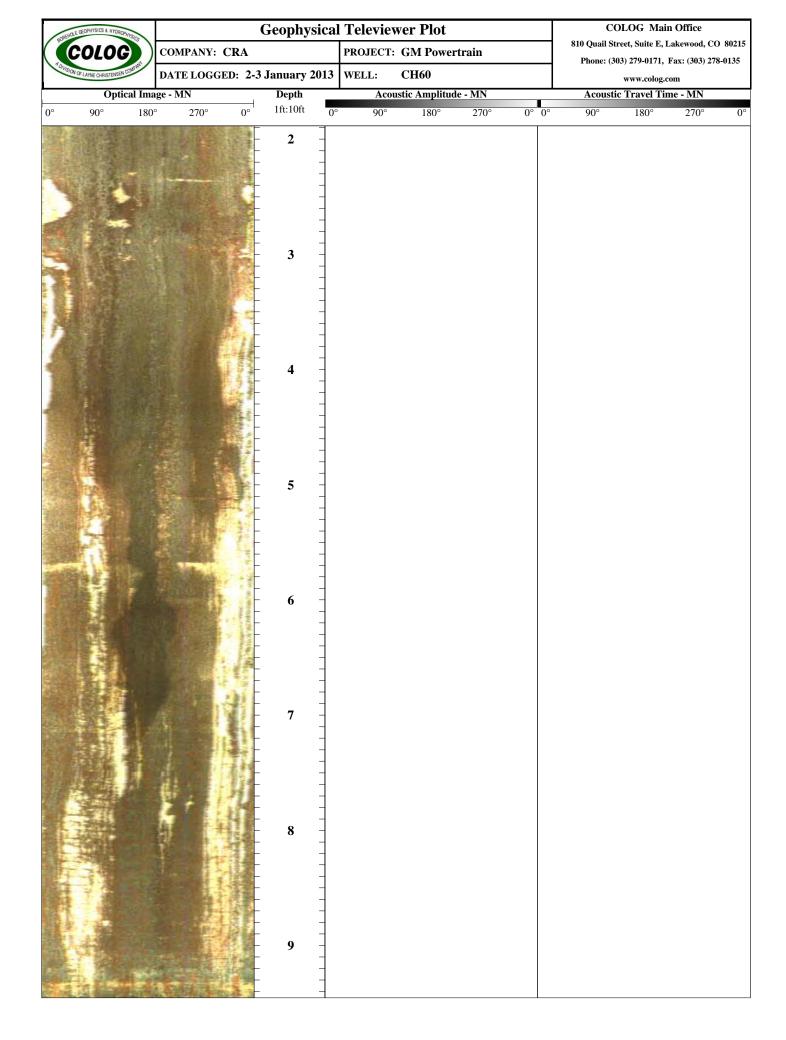


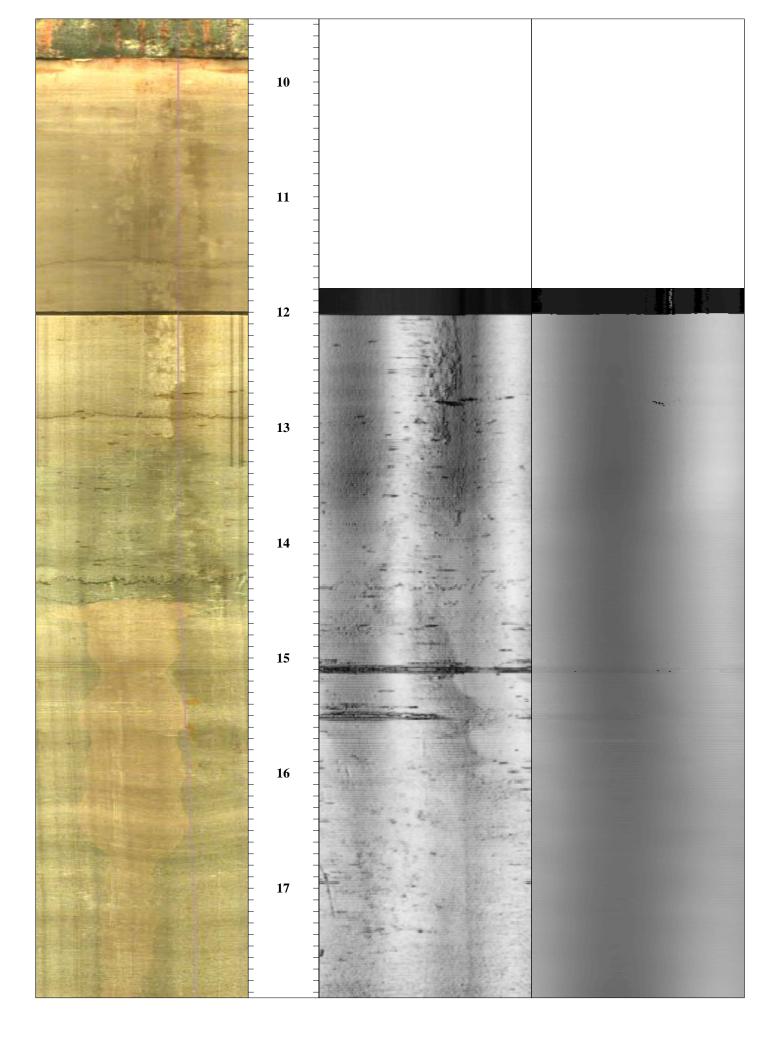


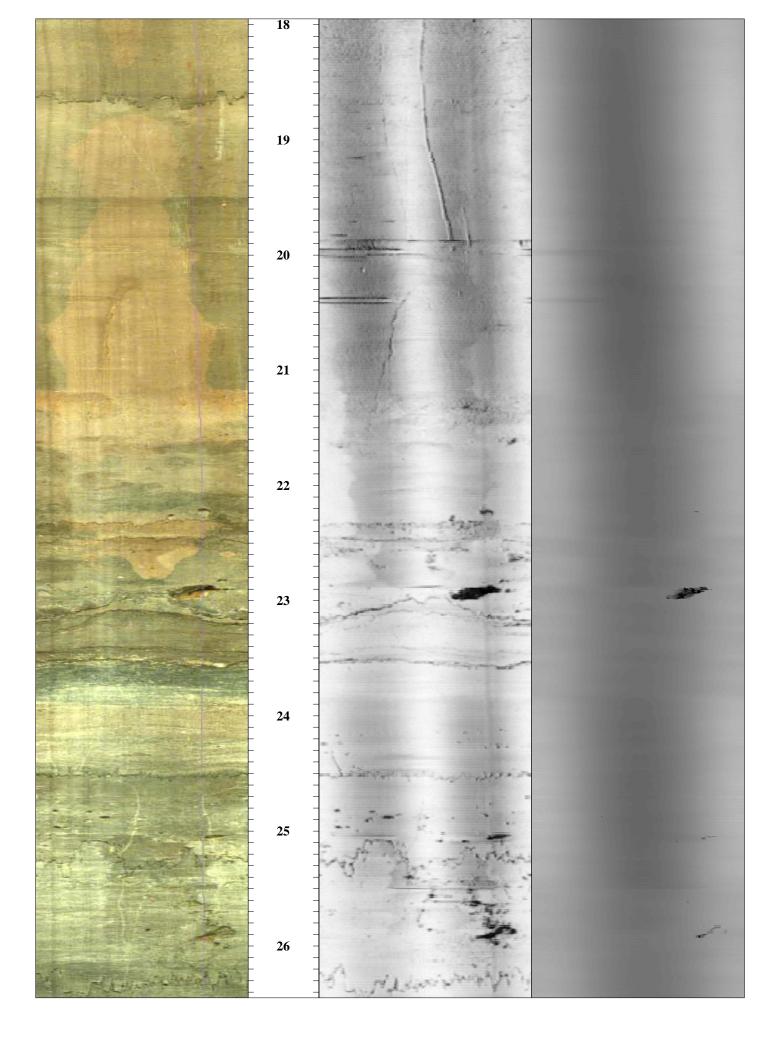

Geophysical Summary Plot COLOG Main Office 810 Quail Street, Suite E, Lakewood, CO 80215 COMPANY: CRA PROJECT: GM Powertrain Phone: (303) 279-0171, Fax: (303) 278-0135 DATE LOGGED: 20 December 2012 WELL: **CH52** www.colog.com 3-Arm Caliper Depth Temperature 11 1ft:85ft Natural Gamma Conductivity 700 100 800 CPS uS/cm 0 5 10 15 **20** 25 **30** 35 **40** 45 **50** Natural Gamma Conductivity 700 100 CPS uS/cm3-Arm Caliper Depth Temperature 11 1ft:85ft 14 'C

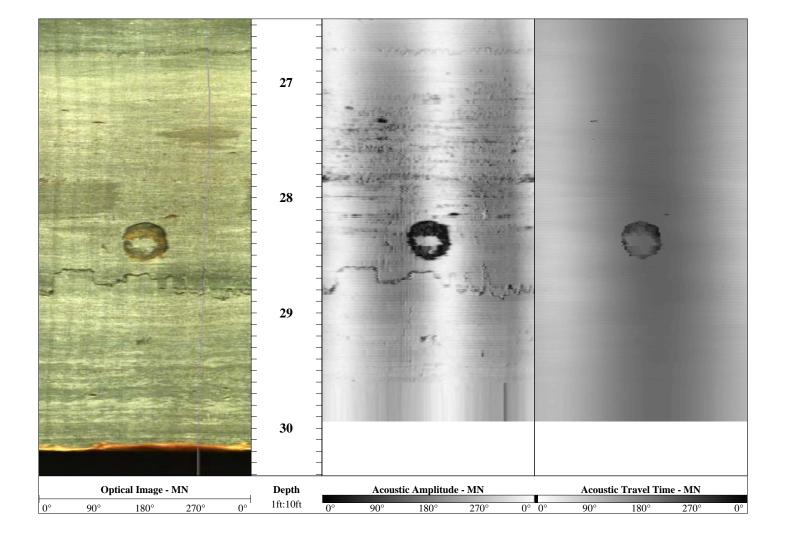












BOREHOLE GEOPHYSICS & HYDROPHYSICS	Geophysic	al Sumi	mary Plo	ot COLOG Main Office				
COLOG	COMPANY: CRA	PROJE	CT: GM F	Powertrain		810 Quail Street, Suite E, Lakewood, CO 80215 Phone: (303) 279-0171, Fax: (303) 278-0135		
* O/VISION OF LAYNE CHRISTENSEN COMPANY	DATE LOGGED: 2-3 January 201.	3 WELL:	СН60)		www.colog.com		
	3-Arm Caliper		Depth		Temperature			
2	in Natural Gamma	7	1ft:40ft	13 'C Conductivity				
0	CPS	50		400	uS/cm	500		
		2	5					
	3							
			10			(
			15					
						}		
			20					
			25					
			30					
	Natural Gamma				Conductivity			
0	CPS 3-Arm Caliper	50	Depth 1ft:40ft	400	uS/cm Temperature	500		
2	in	7	111:4UII	13	'C	15		

Appendix D

Packer - Pressure Testing

SUMMARY OF PACKER TESTING DATA - CH-19 GENERAL MOTORS CET BEDFORD FACILITY

Test Ir	nterval	Ave	rage Hydraı	ılic Conduct	ivity	
(ft B	(GS)		(cm,	/sec)		
Тор	Bottom	Pressure 1	Pressure 2	Pressure 3	AVG.	Comment
23	28	<2.42E-06	<1.76E-06	<1.38E-06	<1.85E-06	
27	32	<1.76E-06	<1.38E-06	<1.14E-06	<1.43E-06	

- 1. NT = Not tested
- 2. Highest possible K used in average calculation with no water take

REPORT OF WATER PRESSURE TESTING GENERAL MOTORS CET BEDFORD FACILITY

Project No.: <u>013968</u>	Hole No.: <u>CH-19</u>	Location: GM Bedford			Sheet No. 1 of 2
Date Started: August 27, 2012	Date Completed: August 28, 2012	Surface Elevation: 625.0 assumed	Depth to Rock: 8.5 feet BGS	Depth to Groundwater: 19.45 fee	t TOC
Logged By: KMV	Client: GM LLC	Gage Height: <u>2.67 feet AGS</u>	Boring Radius (ft) = r _w	<u>0.16</u> TOC Elevation: 627.79	Stickup (ft): 2.8

											Pr	essure		
Test No.	Packer Inflation Pressure (psi)	Dep From	th To	Length of Interval Tested (feet)	Water M Start	leter (gal) End	Water Pumped/Injected (cu. ft) (gal)(1)	Elapsed Time (min.)	(Q) Rate (gpd)	Static Borehole (psi)	Line Gauge (psi)	Test Borehole (psi)	Recorder Sensitivity (%)	Hydraulic Conductivity (cm/s)
1	110	27.0	32.0	5	17357.80	17357.80	0.00	5	0.00			10		<1.76E-06
2	110	27.0	32.0	5	17358.90	17358.90	0.00	5	0.00			10		<1.76E-06
3	110	27.0	32.0	5	17359.85	17359.85	0.00	5	0.00			10		<1.76E-06
4	110	27.0	32.0	5	17361.15	17361.15	0.00	5	0.00			15		<1.38E-06
5	110	27.0	32.0	5	17362.40	17362.40	0.00	5	0.00			15		<1.38E-06
6	110	27.0	32.0	5	17363.60	17363.60	0.00	5	0.00			15		<1.38E-06
7	110	27.0	32.0	5	17364.90	17364.90	0.00	5	0.00			20		<1.14E-06
8	110	27.0	32.0	5	17366.15	17366.15	0.00	5	0.00			20		<1.14E-06
9	110	27.0	32.0	5	17367.35	17367.35	0.00	5	0.00			20		<1.14E-06
1	110	23.0	28.0	5	17368.70	17368.70	0.00	5	0.00			5		<2.42E-06
2	110	23.0	28.0	5	17369.00	17369.00	0.00	5	0.00			5		<2.42E-06
3	110	23.0	28.0	5	17369.35	17369.35	0.00	5	0.00			5		<2.42E-06
4	110	23.0	28.0	5	17369.90	17369.90	0.00	5	0.00			10		<1.76E-06
5	110	23.0	28.0	5	17370.35	17370.35	0.00	5	0.00			10		<1.76E-06
6	110	23.0	28.0	5	17371.90	17371.90	0.00	5	0.00			10		<1.76E-06
7	110	23.0	28.0	5	17371.60	17371.60	0.00	5	0.00			15		<1.38E-06
8	110	23.0	28.0	5	17372.30	17372.30	0.00	5	0.00			15		<1.38E-06
9	110	23.0	28.0	5	17373.00	17373.00	0.00	5	0.00			15		<1.38E-06

⁻ Column Pressure = Depth to upper packer to depth to groundwater, whichever is smaller.

(1) Conversion Factor: 7.48 U.S. Gallons = 1 cu. ft.

SUMMARY OF PACKER TESTING DATA - CH-21 GENERAL MOTORS CET BEDFORD FACILITY

Test I	nterval	Ave	rage Hydraı	ılic Conduct	ivity	
(ft I	3GS)		(cm,	/sec)		
Top	Bottom	Pressure 1	Pressure 2	Pressure 3	AVG.	Comment
13	18	<3.52E-06	2.45E-06	<1.88E-06	2.62E-06	
17	22	<3.52E-06	<2.45E-06	<1.88E-06	<2.62E-06	
21	26	<3.17E-06	<2.13E-06	<1.60E-06	<2.30E-06	
25	30	<3.17E-06	<2.13E-06	<1.60E-06	<2.30E-06	
29	34	<2.89E-06	<1.88E-06	<1.39E-06	<2.05E-06	
33	38	<3.52E-06	<2.45E-06	<1.88E-06	<2.62E-06	
37	42	6.39E-06	2.12E-05	3.18E-05	2.0E-05	
42.5	45.5	5.26E-06	1.81E-05	2.27E-06	8.5E-06	
13	45.5	<5.82E-07	NT	NT	<5.82E-07	

- 1. NT = Not tested
- 2. Highest possible K used in average calculation with no water take

Project No.: <u>013968</u>	Hole No.: <u>CH-21</u>	Location: GM Bedford				Sheet No. 1 of 5
Date Started: August 15, 2006	Date Completed: <u>August 17, 2006</u>	Surface Elevation: <u>612.1</u>	Depth to Rock: 11.5 feet BGS	Depth to C	Groundwater: 11.1 feet To	<u>OC</u>
Logged By: <u>KMV</u>	Client: General Motors Corp.	Gage Height: <u>3.3 feet AGS</u>	Boring Radius (ft) = r _w	0.16	TOC Elevation: 614.47	Stickup (ft): 2.4

											Pr	essure		
Test No.	Packer Inflation Pressure (psi)	Dep From	th To	Length of Interval Tested (feet)	Water M Start	eter (gal) End	Water Pumped/Injected (cu. ft) (gal)(1)	Elapsed Time (min.)	(Q) Rate (gpd)	Static Borehole (psi)	Line Gauge (psi)	Test Borehole (psi)	Recorder Sensitivity (%)	Hydraulic Conductivity (cm/s)
1	150	13	18	5	1981.75	1981.75	0.00	5	0.0	,	7	4		<3.52E-06
2	150	13	18	5	1982.00	1982.00	0.00	5	0.0			4		<3.52E-06
3	150	13	18	5	1982.00	1982.00	0.00	5	0.0			4		<3.52E-06
4	150	13	18	5	1983.10	1983.15	0.05	5	14.4			8		2.45E-06
5	150	13	18	5	1983.55	1983.60	0.05	5	14.4			8		2.45E-06
6	150	13	18	5	1984.05	1984.10	0.05	5	14.4			8		2.45E-06
7	150	13	18	5	1984.70	1984.70	0.00	5	0.0			12		<1.88E-06
8	150	13	18	5	1985.35	1985.35	0.00	5	0.0			12		<1.88E-06
9	150	13	18	5	1986.05	1986.05	0.00	5	0.0			12		<1.88E-06
1	160	17	22	5	1978.85	1978.85	0.00	5	0.0			4		<3.52E-06
2	160	17	22	5	1978.95	1978.95	0.00	5	0.0			4		<3.52E-06
3	160	17	22	5	1979.15	1979.15	0.00	5	0.0			4		<3.52E-06
4	160	17	22	5	1979.40	1979.40	0.00	5	0.0			8		<2.45E-06
5	160	17	22	5	1979.70	1979.70	0.00	5	0.0			8		<2.45E-06
6	160	17	22	5	1979.95	1979.95	0.00	5	0.0			8		<2.45E-06
7	160	17	22	5	1980.35	1980.35	0.00	5	0.0			12		<1.88E-06
8	160	17	22	5	1980.75	1980.75	0.00	5	0.0			12		<1.88E-06
9	160	17	22	5	1981.20	1981.20	0.00	5	0.0			12		<1.88E-06

⁻ Column Pressure = Depth to upper packer to depth to groundwater, whichever is smaller.
(1) Conversion Factor: 7.48 U.S. Gallons = 1 cu. ft.

Project No.: <u>013968</u>	Hole No.: <u>CH-21</u>	Location: GM Bedford				Sheet No. 2 of 5
Date Started: August 15, 2006	Date Completed: <u>August 17, 2006</u>	Surface Elevation: <u>612.1</u>	Depth to Rock: 11.5 feet BGS	Depth to C	Groundwater: 11.1 feet To	<u>OC</u>
Logged By: <u>KMV</u>	Client: General Motors Corp.	Gage Height: 3.3 feet AGS	Boring Radius (ft) = r _w	0.16	TOC Elevation: 614.47	Stickup (ft): 2.4

											Pro	essure		
Test No.	Packer Inflation Pressure (psi)	Dep From	th To	Length of Interval Tested (feet)	Water M Start	eter (gal) End	Water Pumped/Injected (cu. ft) (gal)(1)	Elapsed Time (min.)	(Q) Rate (gpd)	Static Borehole (psi)	Line Gauge (psi)	Test Borehole (psi)	Recorder Sensitivity (%)	Hydraulic Conductivity (cn/s)
1	160	21	26	5	1975.80	1975.80	0.00	5	0.0			5		<3.17E-06
2	160	21	26	5	1975.90	1975.90	0.00	5	0.0			5		<3.17E-06
3	160	21	26	5	1976.00	1976.00	0.00	5	0.0			5		<3.17E-06
4	160	21	26	5	1976.35	1976.35	0.00	5	0.0			10		<2.13E-06
5	160	21	26	5	1976.60	1976.60	0.00	5	0.0			10		<2.13E-06
6	160	21	26	5	1976.90	1976.90	0.00	5	0.0			10		<2.13E-06
7	160	21	26	5	1977.45	1977.45	0.00	5	0.0			15		<1.60E-06
8	160	21	26	5	1977.80	1977.80	0.00	5	0.0			15		<1.60E-06
9	160	21	26	5	1978.25	1978.25	0.00	5	0.0			15		<1.60E-06
1	160	25	30	5	1973.45	1973.45	0.00	5	0.0			5		<3.17E-06
2	160	25	30	5	1973.55	1973.55	0.00	5	0.0			5		<3.17E-06
3	160	25	30	5	1973.65	1973.65	0.00	5	0.0			5		<3.17E-06
4	160	25	30	5	1973.95	1973.95	0.00	5	0.0			10		<2.13E-06
5	160	25	30	5	1974.20	1974.20	0.00	5	0.0			10		<2.13E-06
6	160	25	30	5	1974.45	1974.45	0.00	5	0.0			10		<2.13E-06
7	160	25	30	5	1974.90	1974.90	0.00	5	0.0			15		<1.60E-06
8	160	25	30	5	1975.30	1975.30	0.00	5	0.0			15		<1.60E-06
9	160	25	30	5	1975.70	1975.70	0.00	5	0.0			15		<1.60E-06

⁻ Column Pressure = Depth to upper packer to depth to groundwater, whichever is smaller.
(1) Conversion Factor: 7.48 U.S. Gallons = 1 cu. ft.

Project No.: <u>013968</u>	Hole No.: <u>CH-21</u>	Location: GM Bedford				Sheet No. 3 of 5
Date Started: August 15, 2006	Date Completed: <u>August 17, 2006</u>	Surface Elevation: <u>612.1</u>	Depth to Rock: 11.5 feet BGS	Depth to C	Groundwater: 11.1 feet To	<u>OC</u>
Logged By: <u>KMV</u>	Client: General Motors Corp.	Gage Height: <u>3.3 feet AGS</u>	Boring Radius (ft) = r _w	0.16	TOC Elevation: 614.47	Stickup (ft): 2.4

											Pr	essure		
Test No.	Packer Inflation Pressure (psi)	Dep From	th To	Length of Interval Tested (feet)	Water M Start	eter (gal) End	Water Pumped/Injected (cu. ft) (gal)(1)	Elapsed Time (min.)	(Q) Rate (gpd)	Static Borehole (psi)	Line Gauge (psi)	Test Borehole (psi)	Recorder Sensitivity (%)	Hydraulic Conductivity (cm/s)
1	160	29	34	5	1970.35	1970.35	0.00	5	0.0	, ,	,	6		<2.89E-06
2	160	29	34	5	1970.50	1970.50	0.00	5	0.0			6		<2.89E-06
3	160	29	34	5	1970.60	1970.60	0.00	5	0.0			6		<2.89E-06
4	160	29	34	5	1970.95	1970.95	0.00	5	0.0			12		<1.88E-06
5	160	29	34	5	1971.20	1971.20	0.00	5	0.0			12		<1.88E-06
6	160	29	34	5	1971.70	1971.70	0.00	5	0.0			12		<1.88E-06
7	160	29	34	5	1972.15	1972.15	0.00	5	0.0			18		<1.39E-06
8	160	29	34	5	1972.60	1972.60	0.00	5	0.0			18		<1.39E-06
9	160	29	34	5	1973.15	1973.15	0.00	5	0.0			18		<1.39E-06
1	160	33	38	5	1968.80	1968.80	0.00	5	0.0			4		<3.52E-06
2	160	33	38	5	1968.85	1968.85	0.00	5	0.0			4		<3.52E-06
3	160	33	38	5	1968.95	1968.95	0.00	5	0.0			4		<3.52E-06
4	160	33	38	5	1969.20	1969.20	0.00	5	0.0			8		<2.45E-06
5	160	33	38	5	1969.35	1969.35	0.00	5	0.0			8		<2.45E-06
6	160	33	38	5	1969.50	1969.50	0.00	5	0.0			8		<2.45E-06
7	160	33	38	5	1969.75	1969.75	0.00	5	0.0			12		<1.88E-06
8	160	33	38	5	1969.95	1969.95	0.00	5	0.0			12		<1.88E-06
9	160	33	38	5	1970.20	1970.20	0.00	5	0.0			12		<1.88E-06

⁻ Column Pressure = Depth to upper packer to depth to groundwater, whichever is smaller.
(1) Conversion Factor: 7.48 U.S. Gallons = 1 cu. ft.

Project No.: <u>013968</u>	Hole No.: <u>CH-21</u>	Location: GM Bedford				Sheet No. 4 of 5
Date Started: August 15, 2006	Date Completed: <u>August 17, 2006</u>	Surface Elevation: <u>612.1</u>	Depth to Rock: 11.5 feet BGS	Depth to O	Groundwater: 11.1 feet To	<u>OC</u>
Logged By: <u>KMV</u>	Client: General Motors Corp.	Gage Height: 3.3 feet AGS	Boring Radius (ft) = r _w	0.16	TOC Elevation: 614.47	Stickup (ft): 2.4

											Pro	essure		
	Packer Inflation	D.	ı1	Length of	Water M	(atau (aa1)	Water Pumped/Injected	Elapsed	(Q) Rate	Static Borehole	Line	Test	Recorder	Hydraulic
Test No.	Pressure (psi)	Dep From	To To	Interval Tested (feet)	Start	End	(cu. ft) (gal)(1)	Time (min.)	(gpd)	Borenote (psi)	Gauge (psi)	Borehole (psi)	Sensitivity (%)	Conductivity (cm/s)
1	150	37	42	5	1948.05	1948.05	0.00	5	0.0			10		<2.13E-06
2	150	37	42	5	1948.75	1949.10	0.35	5	100.8			10		1.49E-05
3	150	37	42	5	1949.50	1949.50	0.00	5	0.0			10		<2.13E-06
4	150	37	42	5	1950.15	1950.15	0.00	5	0.0			18		<1.39E-06
5	150	37	42	5	1951.25	1951.70	0.45	5	129.6			18		1.26E-05
6	150	37	42	5	1952.70	1952.90	0.20	5	57.6			18		5.58E-06
7	150	37	42	5	1954.45	1955.85	1.40	5	403.2			24		3.10E-05
8	150	37	42	5	1957.90	1958.80	0.90	5	259.2			24		1.99E-05
9	150	37	42	5	1959.90	1961.90	2.00	5	576.0			24		4.43E-05
10	150	37	42	5	1962.75	1963.65	0.90	5	259.2			18		2.51E-05
11	150	37	42	5	1964.40	1966.10	1.70	5	489.6			18		4.74E-05
12	150	37	42	5	1966.90	1968.15	1.25	5	360.0			18		3.49E-05
1	150	42.5	45.5	3	1939.15	1939.15	0.00	5	0.0			5		<4.51E-06
2	150	42.5	45.5	3	1939.60	1939.70	0.10	5	28.8			5		9.01E-06
3	150	42.5	45.5	3	1940.15	1940.15	0.00	5	0.0			5		<4.51E-06
4	150	42.5	45.5	3	1941.05	1941.05	0.00	5	0.0			10		<3.02E-06
5	150	42.5	45.5	3	1941.65	1942.30	0.65	5	187.2			10		3.93E-05
6	150	42.5	45.5	3	1942.90	1943.10	0.20	5	57.6			10		1.21E-05
7	150	42.5	45.5	3	1943.95	1944.00	0.05	5	14.4			15		2.27E-06
8	150	42.5	45.5	3	1945.05	1945.05	0.00	5	0.0			15		<2.27E-06
9	150	42.5	45.5	3	1945.85	1945.85	0.00	5	0.0			15		<2.27E-06
10	150	42.5	45.5	3	1946.60	1946.60	0.00	5	0.0			5		<4.51E-06
11	150	42.5	45.5	3	1947.05	1947.05	0.00	5	0.0			5		<4.51E-06
12	150	42.5	45.5	3	1947.55	1947.55	0.00	5	0.0			5		<4.51E-06

- Column Pressure = Depth to upper packer to depth to groundwater, whichever is smaller. (1) Conversion Factor: 7.48 U.S. Gallons = 1 cu. ft.

Project No.: <u>013968</u>	Hole No.: <u>CH-21</u>	Location: GM Bedford				Sheet No. 5 of 5
Date Started: August 15, 2006	Date Completed: <u>August 17, 2006</u>	Surface Elevation: <u>612.1</u>	Depth to Rock: 11.5 feet BGS	Depth to C	Groundwater: 11.1 feet To	<u>OC</u>
Logged By: KMV	Client: General Motors Corp.	Gage Height: 3.3 feet AGS	Boring Radius (ft) = r _w	<u>0.16</u>	TOC Elevation: 614.47	Stickup (ft): 2.4

											Pro	essure		
Test No.	Packer Inflation Pressure (psi)	Dep From	th To	Length of Interval Tested (feet)	Water M Start	eter (gal) End	Water Pumped/Injected (cu. ft) (gal)(1)	Elapsed Time (min.)	(Q) Rate (gpd)	Static Borehole (psi)	Line Gauge (psi)	Test Borehole (psi)	Recorder Sensitivity (%)	Hydraulic Conductivity (cm/s)
1	150	13	45.5	32.5	1986.75	1986.75	0.00	5	0.0			8		<5.82E-07
2	150	13	45.5	32.5	1987.05	1987.05	0.00	5	0.0			8		<5.82E-07
3	150	13	45.5	32.5	1987.35	1987.35	0.00	5	0.0			8		<5.82E-07

⁻ Column Pressure = Depth to upper packer to depth to groundwater, whichever is smaller.

(1) Conversion Factor: 7.48 U.S. Gallons = 1 cu. ft.

SUMMARY OF PACKER TESTING DATA - CH-23 GENERAL MOTORS CET BEDFORD FACILITY

	nterval	Ave	rage Hydraı		ivity	
(ft E	3 <i>GS</i>)		(cm,	/sec)		
Тор	Bottom	Pressure 1	Pressure 2	Pressure 3	AVG.	Comment
6	11	<3.74E-06	NT	NT	<3.74E-06	
10	15	<3.75E-06	<2.37E-06	NT	<3.06E-06	
14	19	<3.75E-06	<2.37E-06	NT	<3.06E-06	
18	23	<3.66E-06	<2.34E-06	<7.72E-06	<4.57E-06	
22	27	<3.66E-06	<2.34E-06	<7.72E-06	<4.57E-06	

- 1. NT = Not tested
- 2. Highest possible K used in average calculation with no water take

Project No.		Hole No.: CH-23	-		Location: <u>GM</u>									Sheet No. 1 of 3
	d: August 24, 2012	Date Completed		012	Surface Elevat			Depth to R	ock: <u>3.5</u>	feet BGS	Depth to		er: <u>8.58 feet T</u>	
ogged By:	KMV	Client: General I	Motors Corp.		Gage Height: 3	3.08 feet AC	<u>GS</u>	Boring Rad	ius (ft) =	r _w	0.16	TOC Eleva	tion: <u>616.33</u>	Stickup (ft): <u>2.8</u>
												essure		
F., 4 N.	Packer Inflation Pressure	Dep		Length of Interval Tested	Water Met	er (gal)	Water Pumped/Injected (cu. ft)	Elapsed Time	(Q) Rate	Static Borehole	Line Gauge	Test Borehole	Recorder Sensitivity	Hydraulic Conductivity
Test No.	(psi)	From	То	(feet)	Start	1	(gal)(1)	(min.)	(gpd)	(psi)	(psi)	(psi)	(%)	(cm/s)
1	110	22	27	5	17315.70	17315.70	0.00	5	0.0			5		<3.66E-06
2	110	22	27	5	17316.00	17316.00	0.00	5	0.0			5		<3.66E-06
3	110	22	27	5	17316.30	17316.30	0.00	5	0.0			5		<3.66E-06
4	110	22	27	5	17316.85	17316.85	0.00	5	0.0			10		<2.34E-06
5	110	22	27	5	17317.40	17317.40	0.00	5	0.0			10		<2.34E-06
6	110	22	27	5	17317.90	17317.90	0.00	5	0.0			10		<2.34E-06
7	110	22	27	5	17318.70	17318.70	0.00	5	0.0			15		<7.72E-06
8	110	22	27	5	17319.50	17319.50	0.00	5	0.0			15		<7.72E-06
9	110	22	27	5	17320.40	17320.40	0.00	5	0.0			15		<7.72E-06
1	110	18	23	5	17321.55	17321.55	0.00	5	0.0			5		<3.66E-06
2	110	18	23	5	17321.60	17321.60	0.00	5	0.0			5		<3.66E-06
3	110	18	23	5	17321.80	17321.80	0.00	5	0.0			5		<3.66E-06
4	110	18	23	5	17321.90	17321.90	0.00	5	0.0			10		<2.34E-06
5	110	18	23	5	17322.15	17322.15	0.00	5	0.0			10		<2.34E-06
6	110	18	23	5	17322.30	17322.30	0.00	5	0.0			10		<2.34E-06
7	110	18	23	5	17322.75	17322.75	0.00	5	0.0			15		<7.72E-06
8	110	18	23	5	17323.05	17323.05	0.00	5	0.0			15		<7.72E-06
9	110	18	23	5	17323.55	17323.55	0.00	5	0.0			15		<7.72E-06

CRA Note: - Gauge Pressure (in psi = 0.433 x ft water).
- Column Pressure = Depth to upper packer to depth to groundwater, whichever is smaller.

(1) Conversion Factor: 7.48 U.S. Gallons = 1 cu. ft.

Project No.: <u>013968</u>	Hole No.: CH-23	Location: GM Bedford			Sheet No. 2 of 3
Date Started: August 27, 2012	Date Completed: August 27, 2012	Surface Elevation: <u>613.5</u>	Depth to Rock: 3.5 feet BGS	Depth to Groundwater: 8.58 feet T	OC
Logged By: KMV	Client: General Motors Corp.	Gage Height: 2.67 feet AGS	Boring Radius (ft) = r _w	<u>0.16</u> TOC Elevation: <u>616.33</u>	Stickup (ft): 2.8
				Pressure	

											Pr	essure		
est No.	Packer Inflation Pressure (psi)	Dep From	th To	Length of Interval Tested (feet)	Water Mo Start	eter (gal) End	Water Pumped/Injected (cu. ft) (gal)(1)	Elapsed Time (min.)	(Q) Rate (gpd)	Static Borehole (psi)	Line Gauge (psi)	Test Borehole (psi)	Recorder Sensitivity (%)	Hydraulic Conductivity (cm/s)
1	110	14	19	5	17323.85	17323.85	0.00	5	0.0			5		<3.75E-06
2	110	14	19	5	17324.10	17324.10	0.00	5	0.0			5		<3.75E-06
3	110	14	19	5	17324.35	17324.35	0.00	5	0.0			5		<3.75E-06
4	110	14	19	5	17324.90	17324.90	0.00	5	0.0			10		<2.37E-06
5	110	14	19	5	17325.30	17325.30	0.00	5	0.0			10		<2.37E-06
6	110	14	19	5	17325.65	17325.65	0.00	5	0.0			10		<2.37E-06
7				0			0.00	5	0.0					#NUM!
8				0			0.00	5	0.0					#NUM!
9				0			0.00	5	0.0					#NUM!
1	110	10	15	5	17326.40	17326.40	0.00	5	0.0			5		<3.75E-06
2	110	10	15	5	17326.55	17326.55	0.00	5	0.0			5		<3.75E-06
3	110	10	15	5	17326.65	17326.65	0.00	5	0.0			5		<3.75E-06
4	110	10	15	5	17327.10	17327.10	0.00	5	0.0			10		<2.37E-06
5	110	10	15	5	17327.40	17327.40	0.00	5	0.0			10		<2.37E-06
6	110	10	15	5	17327.70	17327.70	0.00	5	0.0			10		<2.37E-06
7			-	0			0.00	5	0.0					#NUM!
8	_			0			0.00	5	0.0					#NUM!
9				0			0.00	5	0.0					#NUM!

⁻ Column Pressure = Depth to upper packer to depth to groundwater, whichever is smaller.

(1) Conversion Factor: 7.48 U.S. Gallons = 1 cu. ft.

	ole No.: <u>CH-23</u>	Location: <u>GM Bedford</u>		ļ	Sheet No. <u>3</u> of <u>3</u>
Date Started: August 27, 2012 Date	ite Completed: August 27, 2012	Surface Elevation: 613.5	Depth to Rock: 3.5 feet BGS	Depth to Groundwater: 8.58 feet TO	<u>)C</u>
Logged By: KMV Clien	ient: <u>General Motors Corp.</u>	Gage Height: <u>2.67 feet AGS</u>	Boring Radius (ft) = r _w	<u>0.16</u> TOC Elevation: <u>616.33</u>	Stickup (ft): 2.8

											Pr	essure		
Test No.	Packer Inflation Pressure (psi)	Dep From	th To	Length of Interval Tested (feet)	Water N Start	1eter (gal) End	Water Pumped/Injected (cu. ft) (gal)(1)	Elapsed Time (min.)	(Q) Rate (gpd)	Static Borehole (psi)	Line Gauge (psi)	Test Borehole (psi)	Recorder Sensitivity (%)	Hydraulic Conductivity (cm/s)
1	110	6	11	5	17328.30	17328.30	0.00	5	0.0		-	5		<3.74E-06
2	110	6	11	5	17328.65	17328.65	0.00	5	0.0			5		<3.74E-06
3	110	6	11	5	17329.05	17329.05	0.00	5	0.0			5		<3.74E-06
4				0			0.00	5	0.0					#NUM!
5				0			0.00	5	0.0					#NUM!
6				0			0.00	5	0.0					#NUM!
7				0			0.00	5	0.0					#NUM!
8				0			0.00	5	0.0					#NUM!
9				0			0.00	5	0.0					#NUM!
1				0			0.00	5	0.0					#NUM!
2				0			0.00	5	0.0					#NUM!
3				0			0.00	5	0.0					#NUM!
4				0			0.00	5	0.0					#NUM!
5				0			0.00	5	0.0					#NUM!
6				0			0.00	5	0.0					#NUM!
7				0			0.00	5	0.0					#NUM!
8				0			0.00	5	0.0					#NUM!
9				0			0.00	5	0.0					#NUM!

⁻ Column Pressure = Depth to upper packer to depth to groundwater, whichever is smaller.
(1) Conversion Factor: 7.48 U.S. Gallons = 1 cu. ft.

SUMMARY OF PACKER TESTING DATA - CH49 GENERAL MOTORS CET BEDFORD FACILITY

	nterval	Ave	rage Hydrai		ivity	
ν	BGS)	D 1	` ,	/sec)		
Тор	Bottom	Pressure 1	Pressure 2	Pressure 3	AVG.	Comment
19	24	<2.13E-06	<1.60E-06	<1.28E-06	<1.67E-06	
25	30	<2.13E-06	<1.60E-06	<1.28E-06	<1.67E-06	
29	34	<2.13E-06	<1.60E-06	<1.28E-06	<1.67E-06	

- 1. NT = Not tested
- $2. \ Highest \ possible \ K \ used \ in \ average \ calculation \ with \ no \ water \ take$

Project No.: <u>013968</u>	Hole No.: <u>CH-49</u>	Location: GM Bedford				Sheet No. <u>1</u> of <u>2</u>
Date Started: August 9, 2012	Date Completed: August 23, 2012	Surface Elevation: 641.1	Depth to Rock: 3.5 feet BGS	Depth to G	roundwater: 23.1 feet TO	
Logged By: KMV	Client: GM LLC	Gage Height: 3.17 feet AGS	Boring Radius (ft) = r _w	0.16	TOC Elevation: 643.84	Stickup (ft): 2.8

												essure		
	Packer Inflation Pressure	Dep	41.	Length of Interval Tested	Water M	atam (col)	Water Pumped/Injected	Elapsed Time	(Q) Rate	Static Borehole	Line	Test Borehole	Recorder Sensitivity	Hydraulic Conductivity
Test No.	(psi)	From	To	(feet)	Start	End	(cu. ft) (gal)(1)	(min.)	(gpd)	(psi)	Gauge (psi)	(psi)	Sensitivity (%)	(cm/s)
1	110	19.0	24.0	5	16932.25	16932.25	0.00	5	0.00			5		<2.13E-06
2	110	19.0	24.0	5	16932.55	16932.55	0.00	5	0.00			5		<2.13E-06
3	110	19.0	24.0	5	16933.00	16933.00	0.00	5	0.00			5		<2.31E-06
4	110	19.0	24.0	5	16933.65	16933.65	0.00	5	0.00			10		<1.60E-06
5	110	19.0	24.0	5	16934.25	16934.25	0.00	5	0.00			10		<1.60E-06
6	110	19.0	24.0	5	16934.85	16934.85	0.00	5	0.00			10		<1.60E-06
7	110	19.0	24.0	5	16935.90	16935.90	0.00	5	0.00			15		<1.28E-06
8	110	19.0	24.0	5	16937.00	16937.00	0.00	5	0.00			15		<1.28E-06
9	110	19.0	24.0	5	16937.90	16937.90	0.00	5	0.00			15		<1.28E-06
1				0			0.00	5	0.00					#NUM!
2				0			0.00	5	0.00					#NUM!
3				0			0.00	5	0.00					#NUM!
4				0			0.00	5	0.00					#NUM!
5				0			0.00	5	0.00					#NUM!
6				0			0.00	5	0.00					#NUM!
7				0			0.00	5	0.00					#NUM!
8				0			0.00	5	0.00					#NUM!
9				0			0.00	5	0.00					#NUM!

⁻ Column Pressure = Depth to upper packer to depth to groundwater, whichever is smaller.

(1) Conversion Factor: 7.48 U.S. Gallons = 1 cu. ft.

Project No.: <u>013968</u>	Hole No.: <u>CH-49</u>	Location: GM Bedford									
Date Started: August 9, 2012	Date Completed: August 23, 2012	Surface Elevation: 641.1	Depth to Rock: 3.5 feet BGS	Depth to G	roundwater: 23.1 feet TO						
Logged By: KMV	Client: GM LLC	Gage Height: 3.17 feet AGS	Boring Radius (ft) = r _w	<u>0.16</u>	TOC Elevation: 643.84	Stickup (ft): 2.8					

											Pr	essure		
	Packer Inflation Pressure	Dep		Length of Interval Tested	L	eter (gal)	Water Pumped/Injected (cu. ft)	Elapsed Time	(Q) Rate	Static Borehole	Line Gauge	Test Borehole	Recorder Sensitivity	Hydraulic Conductivity
Test No.	(psi)	From	To	(feet)	Start	End	(gal)(1)	(min.)	(gpd)	(psi)	(psi)	(psi)	(%)	(cm/s)
1	110	25.0	30.0	5	17309.05	17309.05	0.00	5	0.00			5		<2.13E-06
2	110	25.0	30.0	5	17309.30	17309.30	0.00	5	0.00			5		<2.13E-06
3	110	25.0	30.0	5	17309.50	17309.50	0.00	5	0.00			5		<2.31E-06
4	110	25.0	30.0	5	17309.90	17309.90	0.00	5	0.00			10		<1.60E-06
5	110	25.0	30.0	5	17310.35	17310.35	0.00	5	0.00			10		<1.60E-06
6	110	25.0	30.0	5	17310.80	17310.80	0.00	5	0.00			10		<1.60E-06
7	110	25.0	30.0	5	17311.35	17311.35	0.00	5	0.00			15		<1.28E-06
8	110	25.0	30.0	5	17311.95	17311.95	0.00	5	0.00			15		<1.28E-06
9	110	25.0	30.0	5	17312.50	17312.50	0.00	5	0.00			15		<1.28E-06
1	110	29.0	34.0	5	17301.90	17301.90	0.00	5	0.00			5		<2.13E-06
2	110	29.0	34.0	5	17302.25	17302.25	0.00	5	0.00			5		<2.13E-06
3	110	29.0	34.0	5	17302.65	17302.65	0.00	5	0.00			5		<2.31E-06
4	110	29.0	34.0	5	17303.50	17303.50	0.00	5	0.00			10		<1.60E-06
5	110	29.0	34.0	5	17304.00	17304.00	0.00	5	0.00			10		<1.60E-06
6	110	29.0	34.0	5	17304.55	17304.55	0.00	5	0.00			10		<1.60E-06
7	110	29.0	34.0	5	17305.25	17305.25	0.00	5	0.00			15		<1.28E-06
8	110	29.0	34.0	5	17306.00	17306.00	0.00	5	0.00			15		<1.28E-06
9	110	29.0	34.0	5	17307.90	17307.90	0.00	5	0.00			15		<1.28E-06

 $\begin{cal} \begin{cal} \be$

Column Pressure = Depth to upper packer to depth to groundwater, whichever is smaller.
 (1) Conversion Factor: 7.48 U.S. Gallons = 1 cu. ft.

SUMMARY OF PACKER TESTING DATA - CH-50 GENERAL MOTORS CET BEDFORD FACILITY

	nterval	Ave				
(ft I	3 <i>GS</i>)		(cm,	/sec)		
Тор	Bottom	Pressure 1	Pressure 2	Pressure 3	AVG.	Comment
25 29	30 34	1.45E-05 7.99E-05	<1.65E-06 NT	<1.32E-06 NT	5.84E-06 7.99E-05	

- 1. NT = Not tested
- 2. Highest possible K used in average calculation with no water take

REPORT OF WATER PRESSURE TESTING GENERAL MOTORS CET

Project No.: <u>013968</u>	Hole No.: <u>CH-50</u>	Location: GM Bedford				Sheet No. 1 of
Date Started: August 10, 2012	Date Completed: August 13, 2012	Surface Elevation: <u>634.8</u>	Depth to Rock: 3.0 feet BGS	Depth to	Groundwater: 22.25 feet	TOC
Logged By: <u>KMV</u>	Client: GM LLC	Gage Height: 2.67 feet AGS	Boring Radius (ft) = r _w	<u>0.16</u>	TOC Elevation:	Stickup (ft): 2.8

											Pr	essure		
est No.	Packer Inflation Pressure (psi)	Dep From	th To	Length of Interval Tested (feet)	Water M Start	eter (gal) End	Water Pumped/Injected (cu. ft) (gal)(1)	Elapsed Time (min.)	(Q) Rate (gpd)	Static Borehole (psi)	Line Gauge (psi)	Test Borehole (psi)	Recorder Sensitivity (%)	Hydraulic Conductivity (cm/s)
1	110	25.0	30.0	5	17098.60	17099.45	0.85	5	244.80			5		3.77E-05
2	110	25.0	30.0	5	17099.50	17099.50	0.00	5	0.00			5		<2.22E-06
3	110	25.0	30.0	5	17099.65	17099.65	0.00	5	0.00			5		<2.22E-06
4	110	25.0	30.0	5	17000.15	17000.15	0.00	5	0.00			10		<1.65E-06
5	110	25.0	30.0	5	17000.60	17000.60	0.00	5	0.00			10		<1.65E-06
6	110	25.0	30.0	5	17001.15	17001.15	0.00	5	0.00			10		<1.65E-06
7	110	25.0	30.0	5	17101.75	17101.75	0.00	5	0.00			15		<1.32E-06
8	110	25.0	30.0	5	17102.35	17102.35	0.00	5	0.00			15		<1.32E-06
9	110	25.0	30.0	5	17102.95	17102.95	0.00	5	0.00			15		<1.32E-06
1	110	29.0	34.0	5	16946.35	16948.50	2.15	5	619.20			10		7.11E-05
2	110	29.0	34.0	5	16948.45	16952.00	3.55	5	1022.40			10		1.17E-04
3	110	29.0	34.0	5	16953.15	16954.70	1.55	5	446.40			10		5.12E-05
4				0			0.00	5	0.00					#NUM!
5				0			0.00	5	0.00					#NUM!
6				0			0.00	5	0.00					#NUM!
7				0			0.00	5	0.00					#NUM!
8				0			0.00	5	0.00					#NUM!
9				0			0.00	5	0.00					#NUM!

⁻ Column Pressure = Depth to upper packer to depth to groundwater, whichever is smaller.

(1) Conversion Factor: 7.48 U.S. Gallons = 1 cu. ft.

SUMMARY OF PACKER TESTING DATA - CH-51 GENERAL MOTORS CET BEDFORD FACILITY

	nterval 3 <i>GS</i>)	Ave	0	ılic Conduct /sec)		
Тор	Bottom	Pressure 1	` ,	Pressure 3	AVG.	Comment
35	40	1.89E-06	1.46E-06	1.19E-06	1.51E-06	

- 1. NT = Not tested
- 2. Highest possible K used in average calculation with no water take

GENERAL MOTORS CET

Project No.: <u>013968</u>	Hole No.: <u>CH-51</u>	Location: GM Bedford				Sheet No. <u>1</u> of <u>1</u>
Date Started: August 15, 2012	Date Completed: August 15, 2012	Surface Elevation: 644.3 assumed	<u>OC</u>			
Logged By: KMV	Client: GM LLC	Gage Height: 3.08 feet AGS	Boring Radius (ft) = r _w	<u>0.16</u>	TOC Elevation: 646.68	Stickup (ft): 2.4

											Pr	essure		
Test No.	Packer Inflation Pressure (psi)	Dep From	th To	Length of Interval Tested (feet)	Water M	eter (gal)	Water Pumped/Injected (cu. ft) (gal)(1)	Elapsed Time (min.)	(Q) Rate (gpd)	Static Borehole (psi)	Line Gauge (psi)	Test Borehole (psi)	Recorder Sensitivity (%)	Hydraulic Conductivity (cm/s)
iest ivo.				(Jeei)						(psi)	(psi)		(70)	
1	110	35.0	40.0	5	17141.60	17141.65	0.05	5	14.40			10		1.89E-06
2	110	35.0	40.0	5	17142.30	17142.30	0.00	5	0.00			10		<1.89E-06
3	110	35.0	40.0	5	17142.85	17142.90	0.05	5	14.40			10		1.89E-06
4	110	35.0	40.0	5	17143.25	17143.30	0.05	5	14.40			15		1.46E-06
5	110	35.0	40.0	5	17144.20	17144.20	0.00	5	0.00			15		<1.46R-06
6	110	35.0	40.0	5	17145.05	17145.05	0.00	5	0.00			15		<1.46R-06
7	110	35.0	40.0	5	17145.95	17145.95	0.00	5	0.00			20		<1.19E-06
8	110	35.0	40.0	5	17146.85	17146.90	0.05	5	14.40			20		1.19E-06
9	110	35.0	40.0	5	17146.90	17146.95	0.05	5	14.40			20		1.19E-06
1				0			0.00	5	0.00					#NUM!
2				0			0.00	5	0.00					#NUM!
3				0			0.00	5	0.00					#NUM!
4				0			0.00	5	0.00					#NUM!
5				0			0.00	5	0.00					#NUM!
6				0			0.00	5	0.00					#NUM!
7				0			0.00	5	0.00					#NUM!
8			-	0			0.00	5	0.00					#NUM!
9				0			0.00	5	0.00					#NUM!

CRA Note:

- Gauge Pressure (in psi = 0.433 x ft water).

- Column Pressure = Depth to upper packer to depth to groundwater, whichever is smaller.

(1) Conversion Factor: 7.48 U.S. Gallons = 1 cu. ft.

SUMMARY OF PACKER TESTING DATA - CH-52 GENERAL MOTORS CET BEDFORD FACILTIY

	Test I	nterval	Ave	rage Hydraı	ılic Conduct		
	(ft BGS) (cm/sec)						
	Top	Bottom	Pressure 1	Pressure 2	Pressure 3	AVG.	Comment
	30	35	<1.71E-06	<1.35E-06	<1.12E-06	<1.39E-06	
	50	55	<1.71E-06	<1.12E-06	<8.31E-07	<1.22E-06	
L							

- 1. NT = Not tested
- 2. Highest possible K used in average calculation with no water take

REPORT OF WATER PRESSURE TESTING GENERAL MOTORS CET

Project No.: <u>013968</u>	Hole No.: <u>CH-52</u>	Location: GM Bedford				Sheet No. 1 of 1
Date Started: August 15, 2012	Date Completed: August 28, 2012	Surface Elevation: <u>668.3</u>	Depth to Rock: 3.0 feet BGS	Depth to 0	Groundwater: 20.92 feet	<u>roc</u>
Logged By: KMV	Client: GM LLC	Gage Height: 2.67 feet AGS	Boring Radius (ft) = r _w	<u>0.16</u>	TOC Elevation: 671.03	Stickup (ft): <u>2.92</u>

											Pro	essure		
Test No.	Packer Inflation Pressure (psi)	Dep From	th To	Length of Interval Tested (feet)	Water M Start	eter (gal) End	Water Pumped/Injected (cu. ft) (gal)(1)	Elapsed Time (min.)	(Q) Rate (gpd)	Static Borehole (psi)	Line Gauge (psi)	Test Borehole (psi)	Recorder Sensitivity (%)	Hydraulic Conductivity (cm/s)
1	110	30.0	35.0	5	17151.00	17151.00	0.00	5	0.00			10		<1.71E-06
2	110	30.0	35.0	5	17152.05	17152.05	0.00	5	0.00			10		<1.71E-06
3	110	30.0	35.0	5	17152.90	17152.90	0.00	5	0.00			10		<1.71E-06
4	110	30.0	35.0	5	17153.70	17153.70	0.00	5	0.00			15		<1.35E-06
5	110	30.0	35.0	5	17154.50	17154.50	0.00	5	0.00			15		<1.35E-06
6	110	30.0	35.0	5	17155.40	17155.40	0.00	5	0.00			15		<1.35E-06
7	110	30.0	35.0	5	17156.55	17156.55	0.00	5	0.00			20		<1.12E-06
8	110	30.0	35.0	5	17157.45	17157.45	0.00	5	0.00			20		<1.12E-06
9	110	30.0	35.0	5	17158.30	17158.30	0.00	5	0.00			20		<1.12E-06
1	115	50.0	55.0	5	17374.70	17374.70	0.00	5	0.00			10		<1.71E-06
2	115	50.0	55.0	5	17375.15	17375.15	0.00	5	0.00			10		<1.71E-06
3	115	50.0	55.0	5	17375.50	17375.50	0.00	5	0.00			10		<1.71E-06
4	115	50.0	55.0	5	17376.30	17376.30	0.00	5	0.00			20		<1.12E-06
5	115	50.0	55.0	5	17377.15	17377.15	0.00	5	0.00			20		<1.12E-06
6	115	50.0	55.0	5	17377.95	17377.95	0.00	5	0.00			20		<1.12E-06
7	115	50.0	55.0	5	17379.95	17379.95	0.00	5	0.00			30		<8.31E-07
8	115	50.0	55.0	5	17379.90	17379.90	0.00	5	0.00			30		<8.31E-07
9	115	50.0	55.0	5	17380.15	17380.15	0.00	5	0.00			30		<8.31E-07

⁻ Column Pressure = Depth to upper packer to depth to groundwater, whichever is smaller.

(1) Conversion Factor: 7.48 U.S. Gallons = 1 cu. ft.

SUMMARY OF PACKER TESTING DATA - CH-60 GENERAL MOTORS CET BEDFORD FACILITY

	nterval 3 <i>GS)</i>	Ave	rage Hydraı (cm)	ılic Conduct /sec)		
Top	Bottom	Pressure 1	Pressure 2	Pressure 3	AVG.	Comment
17 21 25	22 26 30	<3.00E-06 <3.00E-06 <3.00E-06	<2.05E-06 <2.05E-06 <2.05E-06	NT <1.56E-06 <1.56E-06	<2.53E-06 <2.20E-06 <2.20E-06	

- 1. NT = Not tested
- $2. \ Highest \ possible \ K \ used \ in \ average \ calculation \ with \ no \ water \ take$

Project No.: <u>013968</u>	Hole No.: <u>CH-60</u>	Location: GM Bedford	ocation: GM Bedford							
Date Started: September 11, 2012	Date Completed: September 11, 2012	Surface Elevation: 620.2	<u>C</u>							
Logged By: KMV	Client: GM LLC	Gage Height: 2.67 feet AGS	Boring Radius (ft) = r _w	0.16	TOC Elevation: 622.07	Stickup (ft): 2.4				

											Pro	essure		
	Packer Inflation Pressure	Dep		Length of Interval Tested		eter (gal)	Water Pumped/Injected (cu. ft)	Elapsed Time	(Q) Rate	Static Borehole	Line Gauge	Test Borehole	Recorder Sensitivity	Hydraulic Conductivity
Test No.	(psi)	From	To	(feet)	Start	End	(gal)(1)	(min.)	(gpd)	(psi)	(psi)	(psi)	(%)	(cm/s)
1	110	17.0	22.0	5	17409.05	17409.05	0.00	5	0.00			5		<3.00E-06
2	110	17.0	22.0	5	17409.40	17409.40	0.00	5	0.00			5		<3.00E-06
3	110	17.0	22.0	5	17409.80	17409.80	0.00	5	0.00			5		<3.00E-06
4	110	17.0	22.0	5	17410.45	17410.45	0.00	5	0.00			10		<2.05E-06
5	110	17.0	22.0	5	17411.10	17411.10	0.00	5	0.00			10		<2.05E-06
6	110	17.0	22.0	5	17411.75	17411.75	0.00	5	0.00			10		<2.05E-06
7				0			0.00	5	0.00					#NUM!
8				0			0.00	5	0.00					#NUM!
9				0			0.00	5	0.00					#NUM!
1	110	21.0	26.0	5	17403.35	17403.35	0.00	5	0.00			5		<3.00E-06
2	110	21.0	26.0	5	17403.80	17403.80	0.00	5	0.00			5		<3.00E-06
3	110	21.0	26.0	5	17404.25	17404.25	0.00	5	0.00			5		<3.00E-06
4	110	21.0	26.0	5	17405.95	17405.95	0.00	5	0.00			10		<2.05E-06
5	110	21.0	26.0	5	17405.50	17405.50	0.00	5	0.00			10		<2.05E-06
6	110	21.0	26.0	5	17406.10	17406.10	0.00	5	0.00			10		<2.05E-06
7	110	21.0	26.0	5	17406.80	17406.80	0.00	5	0.00			15		<1.56E-06
8	110	21.0	26.0	5	17407.65	17407.65	0.00	5	0.00			15		<1.56E-06
9	110	21.0	26.0	5	17408.40	17408.40	0.00	5	0.00			15		<1.56E-06

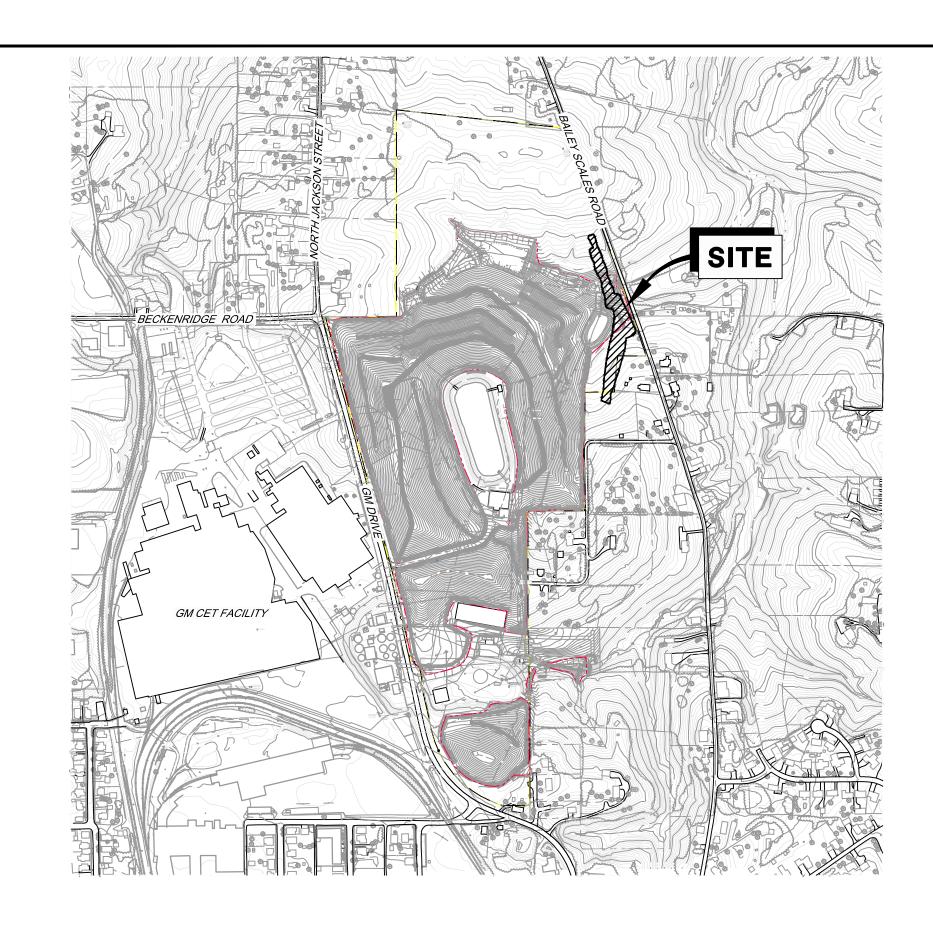
CRA Note:

- Gauge Pressure (in psi = 0.433 x ft water).

- Column Pressure = Depth to upper packer to depth to groundwater, whichever is smaller.

(1) Conversion Factor: 7.48 U.S. Gallons = 1 cu. ft.

Project No.: <u>013968</u>	Hole No.: <u>CH-60</u>	Location: GM Bedford				Sheet No. <u>2</u> of <u>2</u>
Date Started: September 11, 2012	Date Completed: September 11, 2012	Surface Elevation: 620.2	Depth to Rock: 7.0 feet BGS	Depth to G	roundwater: 13.11 feet TO	<u>c</u>
Logged By: KMV	Client: GM LLC	Gage Height: 2.67 feet AGS	Boring Radius (ft) = r _w	<u>0.16</u>	TOC Elevation: 622.07	Stickup (ft): 2.4


											Pr	essure		
	Packer Inflation Pressure	Dep		Length of Interval Tested		eter (gal)	Water Pumped/Injected (cu. ft)	Elapsed Time	(Q) Rate	Static Borehole	Line Gauge	Test Borehole	Recorder Sensitivity	Hydraulic Conductivity
Test No.	(psi)	From	То	(feet)	Start	End	(gal)(1)	(min.)	(gpd)	(psi)	(psi)	(psi)	(%)	(cm/s)
1	110	25.0	30.0	5	17296.75	17296.75	0.00	5	0.00			5		<3.00E-06
2	110	25.0	30.0	5	17297.15	17297.15	0.00	5	0.00			5		<3.00E-06
3	110	25.0	30.0	5	17297.70	17297.70	0.00	5	0.00			5		<3.00E-06
4	110	25.0	30.0	5	17298.35	17298.35	0.00	5	0.00			10		<2.05E-06
5	110	25.0	30.0	5	17299.10	17299.10	0.00	5	0.00			10		<2.05E-06
6	110	25.0	30.0	5	17299.80	17299.80	0.00	5	0.00			10		<2.05E-06
7	110	25.0	30.0	5	17300.70	17300.70	0.00	5	0.00			15		<1.56E-06
8	110	25.0	30.0	5	17301.60	17301.60	0.00	5	0.00			15		<1.56E-06
9	110	25.0	30.0	5	17302.40	17302.40	0.00	5	0.00			15		<1.56E-06
1				0			0.00	5	0.00					#NUM!
2				0			0.00	5	0.00					#NUM!
3				0			0.00	5	0.00					#NUM!
4				0			0.00	5	0.00					#NUM!
5				0			0.00	5	0.00					#NUM!
6				0			0.00	5	0.00					#NUM!
7				0			0.00	5	0.00					#NUM!
8				0			0.00	5	0.00					#NUM!
9	·			0			0.00	5	0.00					#NUM!

Column Pressure = Depth to upper packer to depth to groundwater, whichever is smaller.
 (1) Conversion Factor: 7.48 U.S. Gallons = 1 cu. ft.

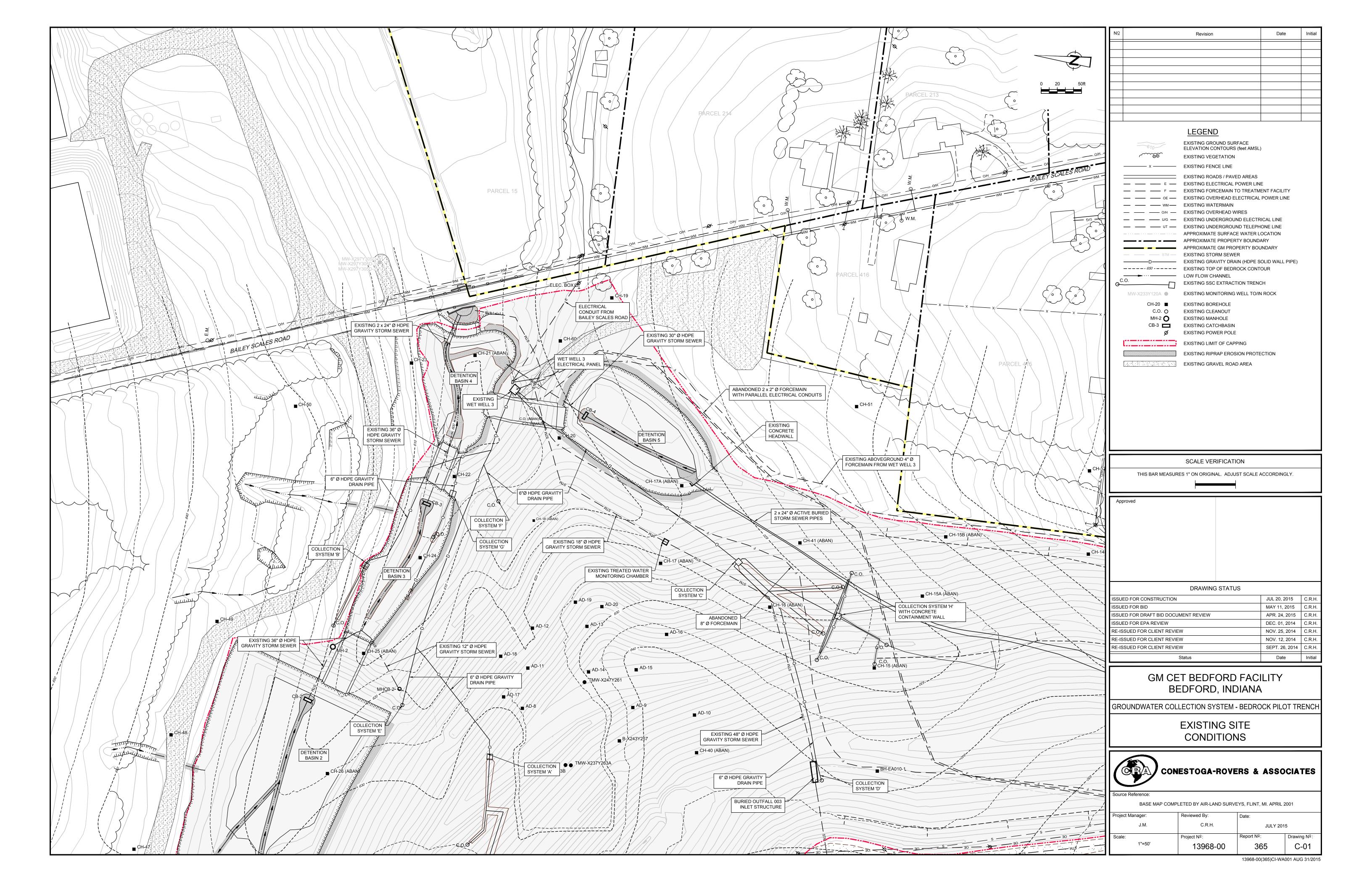
Appendix E

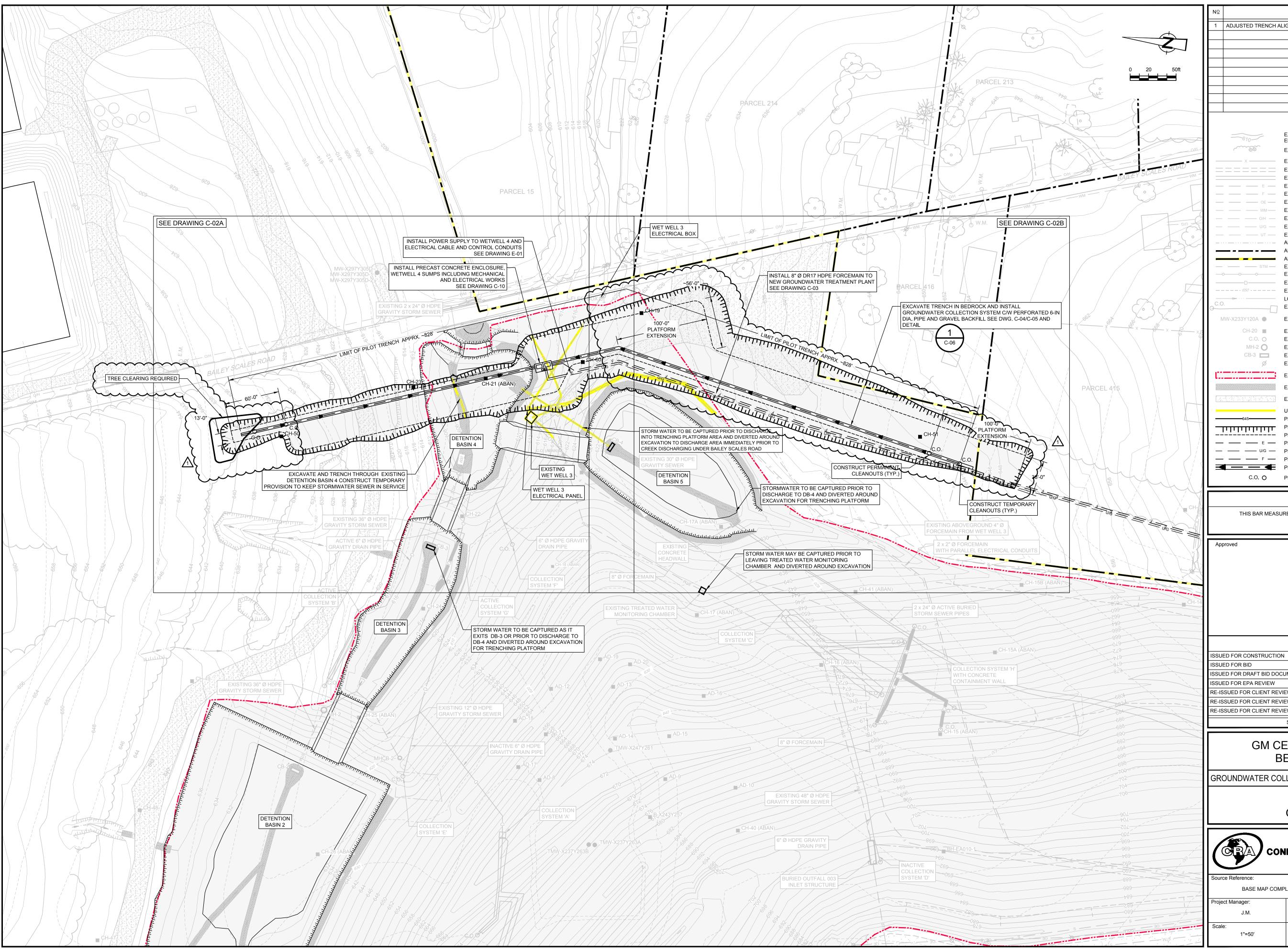
Design Drawings

KEY MAP

DRAWING INDEX

	<u> </u>
DWG. No.	<u>TITLE</u>
C-01	EXISTING SITE CONDITIONS
C-02	SITE WORKS - OVERALL AREA
C-02A	SITE WORKS - NORTH AREA
C-02B	SITE WORKS - SOUTH AREA
C-03	FORCEMAIN/ELECTRICAL CONDUIT LAYOUT
C-04	OVERBURDEN EXCAVATION PLAN AND SECTIONS
C-05	GROUNDWATER COLLECTION SYSTEM PLAN AND PROFILE
C-06	GROUNDWATER COLLECTION SYSTEM DETAILS (1 OF 2)
C-07	GROUNDWATER COLLECTION SYSTEM DETAILS (2 OF 2)
C-08	SOILS EROSION AND SEDIMENT CONTROL PLAN
C-09	SOILS EROSION AND SEDIMENT CONTROL DETAILS
C-10	WET WELL DETAILS (1 OF 3)
C-11	WET WELL DETAILS (2 OF 3)
C-12	WET WELL DETAILS (3 OF 3)
C-13	OVERALL PLAN - CONSTRUCTION ACCESS ROADS
C-14	GWTP CONSTRUCTION ACCESS ROAD (OBSOLETE)
C-15	PILOT TRENCH CONSTRUCTION ACCESS ROAD
C-16	CONSTRUCTION ACCESS ROAD DETAILS
E-01	ELECTRICAL SITE PLAN
E-02	ELECTRICAL DISTRIBUTION AND CONTROL SCHEMATIC
E-03	GROUNDING PLAN SECTIONS AND DETAILS
CS1-001	OVERALL EXISTING CONDITIONS SITE PLAN
CS1-002	OVERALL PROPOSED CONDITIONS SITE PLAN
CS1-003	PROPOSED CONDITIONS SITE PLAN
CS1-005	CIVIL SITE PLAN (1 OF 2)
CS3-001	ROAD CROSS SECTIONS
CS5-001	CIVIL DETAILS
CU3-001	PIPELINE PROFILES (1 OF 3)
CU3-002	PIPELINE PROFILES (2 OF 3)
CU3-003	PIPELINE PROFILES (3 OF 3)
CU3-004	CULVERT PROFILE


EAST PLANT AREA GROUNDWATER COLLECTION SYSTEM BEDROCK PILOT TRENCH DESIGN


ISSUED FOR CONSTRUCTION REVISION 1: SEPT. 3, 2015

GM CET BEDFORD FACILITY BEDFORD, INDIANA

CONESTOGA-ROVERS & ASSOCIATES LIMITED (CRA) CHANGED ITS NAME TO GHD LIMITED ON JULY 1, 2015. THIS DOCUMENT WAS ORIGINALLY SUBMITTED UNDER THE CRA NAME PRIOR TO THIS DATE. HOWEVER, IN THE INTEREST OF THE CONTINUITY, THE CRA NAME WILL REMAIN ON THIS DOCUMENT AFTER JULY 1, 2015

ADJUSTED TRENCH ALIGNMENT SEPT 3, 2015 C.R.H. <u>LEGEND</u> EXISTING GROUND SURFACE ELEVATION CONTOURS (feet AMSL) EXISTING VEGETATION EXISTING FENCE LINE EXISTING DIRT ROADS EXISTING ROADS / PAVED AREAS EXISTING ELECTRICAL POWER LINE EXISTING FORCEMAIN TO TREATMENT FACILITY EXISTING OVERHEAD ELECTRICAL POWER LINE EXISTING WATERMAIN EXISTING OVERHEAD WIRES EXISTING UNDERGROUND ELECTRICAL LINE EXISTING UNDERGROUND TELEPHONE LINE APPROXIMATE SURFACE WATER LOCATION APPROXIMATE PROPERTY BOUNDARY APPROXIMATE GM PROPERTY BOUNDARY EXISTING STORM SEWER EXISTING GUARD RAIL EXISTING GRAVITY DRAIN (HDPE SOLID WALL PIPE) EXISTING TOP OF BEDROCK CONTOUR LOW FLOW CHANNEL EXISTING SSC EXTRACTION TRENCH MW-X233Y120A EXISTING MONITORING WELL TO/IN ROCK EXISTING BOREHOLE EXISTING CLEANOUT EXISTING MANHOLE CB-3 EXISTING CATCHBASIN EXISTING POWER POLE EXISTING LIMIT OF CAPPING EXISTING RIPRAP EROSION PROTECTION EXISTING GRAVEL ROAD AREA UTILITIES TO BE TEMPORARILY RELOCATED PROPOSED CONTOUR PROPOSED EXCAVATION TRENCH PLATFORM TOP OF BANK PROPOSED EXCAVATION TRENCH PLATFORM BOTTOM OF BANK — — U/G — PROPOSED CONTROL CONDUIT — PROPOSED HDPE FORCEMAIN PROPOSED PILOT TRENCH C.O. O PROPOSED TEMPORARY CLEANOUT SCALE VERIFICATION THIS BAR MEASURES 1" ON ORIGINAL. ADJUST SCALE ACCORDINGLY.

DRAWING STATUS

 SSUED FOR CONSTRUCTION
 JUL 20, 2015
 C.R.H.

 SSUED FOR BID
 MAY 11, 2015
 C.R.H.

 SSUED FOR DRAFT BID DOCUMENT REVIEW
 APR. 24, 2015
 C.R.H.

 SSUED FOR EPA REVIEW
 DEC. 01, 2014
 C.R.H.

 RE-ISSUED FOR CLIENT REVIEW
 NOV. 25, 2014
 C.R.H.

 RE-ISSUED FOR CLIENT REVIEW
 NOV. 12, 2014
 C.R.H.

 RE-ISSUED FOR CLIENT REVIEW
 SEPT. 26, 2014
 C.R.H.

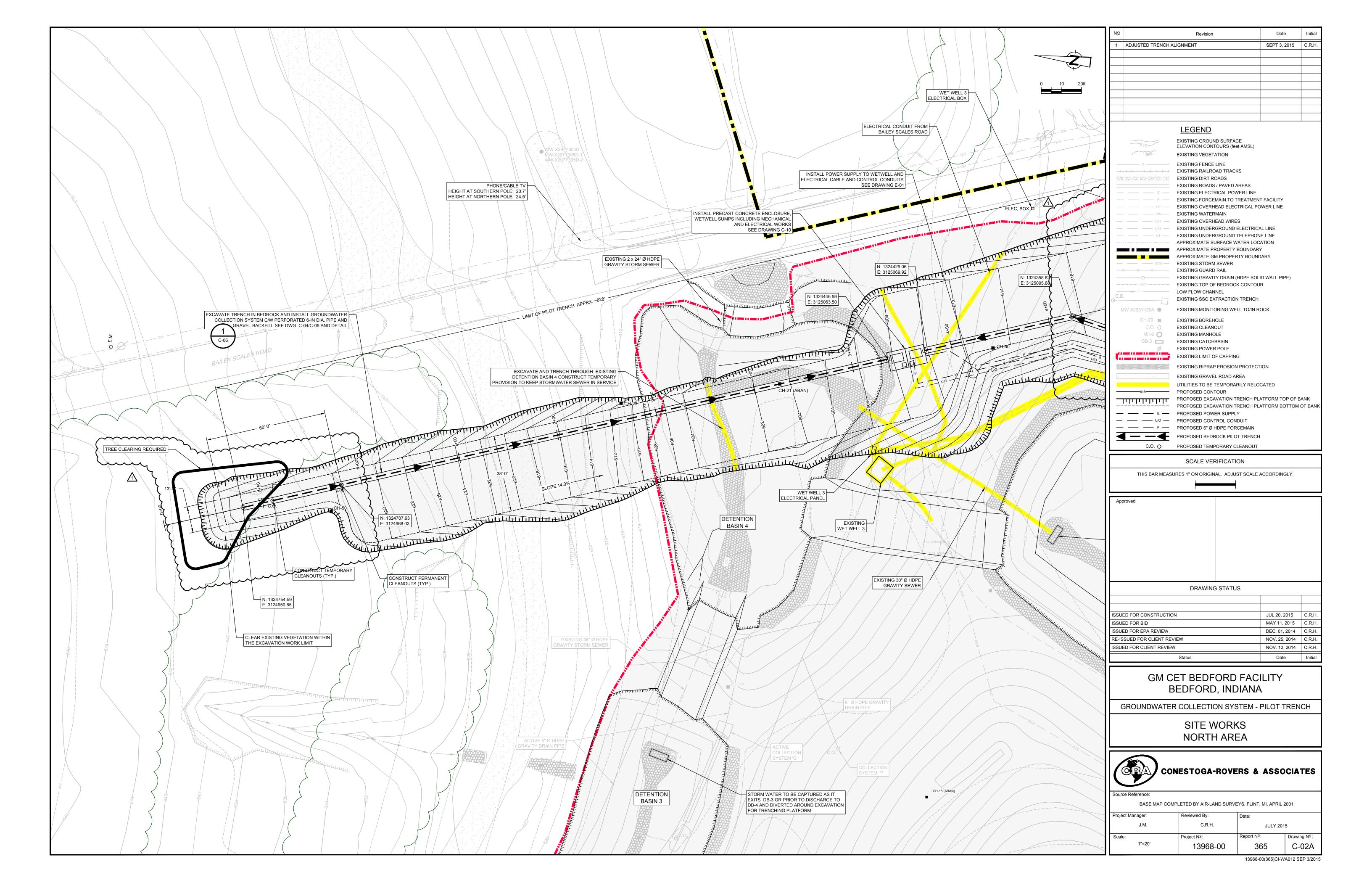
 Status
 Date
 Initial

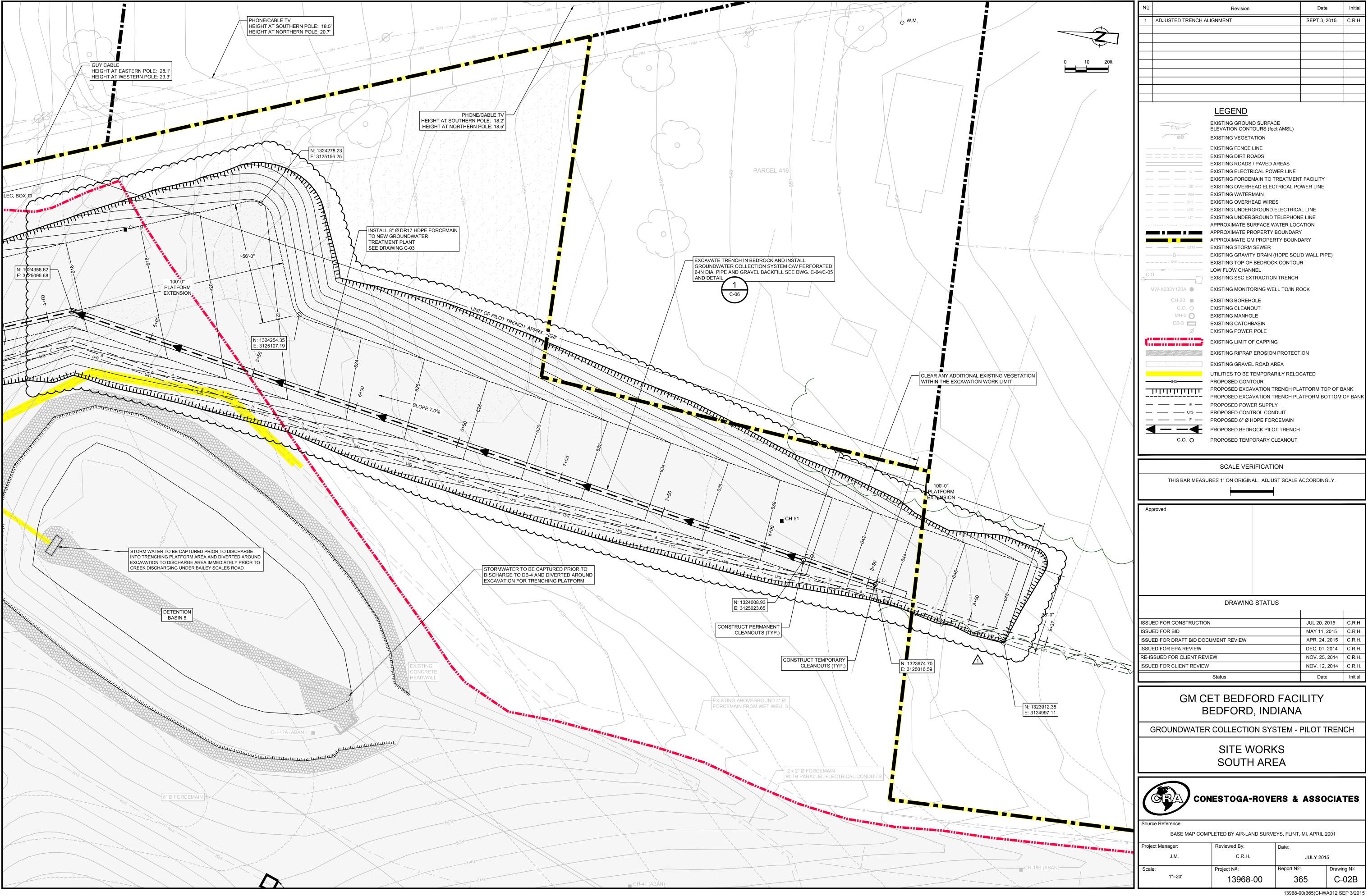
GM CET BEDFORD FACILITY BEDFORD, INDIANA

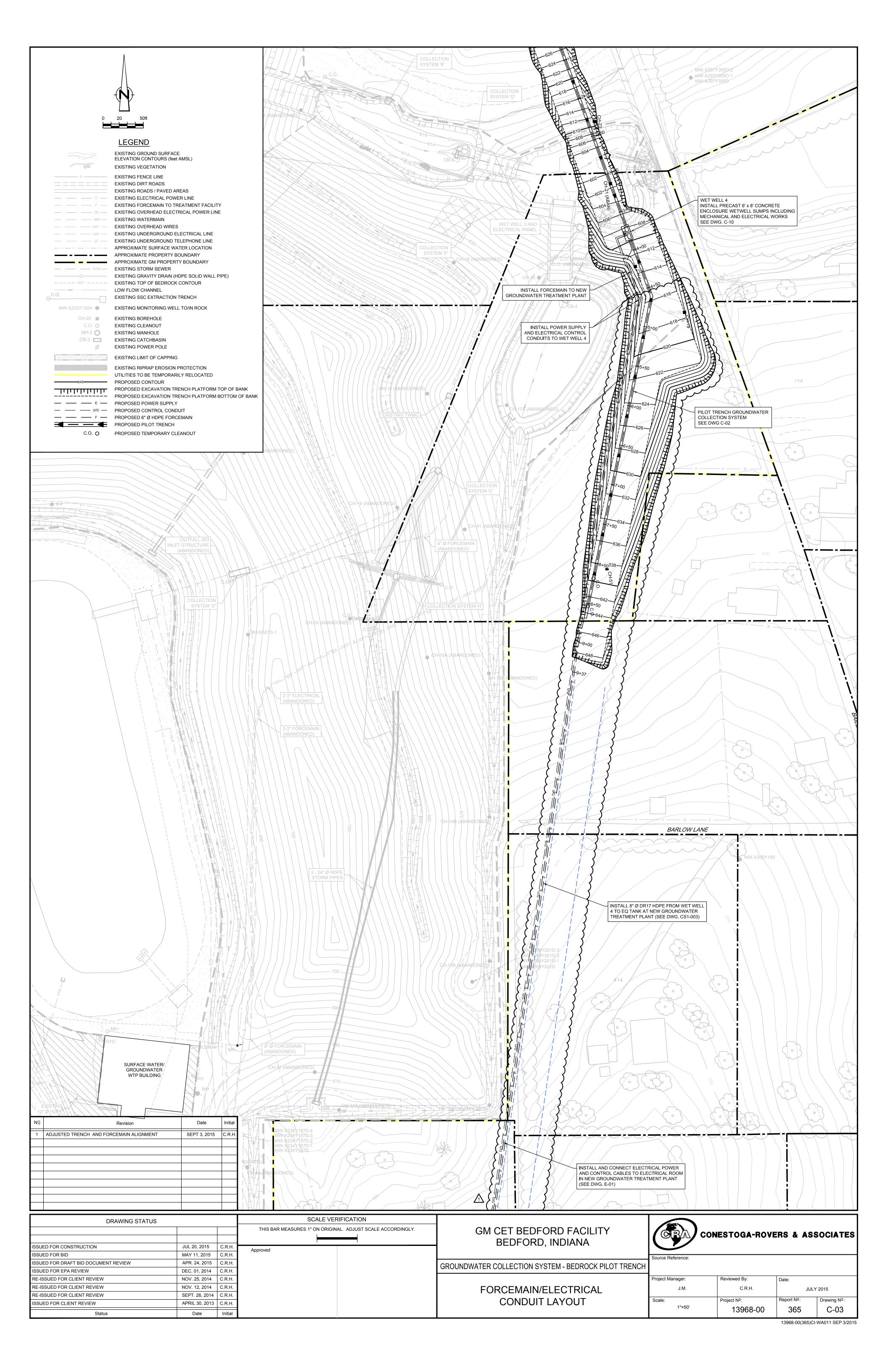
GROUNDWATER COLLECTION SYSTEM - BEDROCK PILOT TRENCH

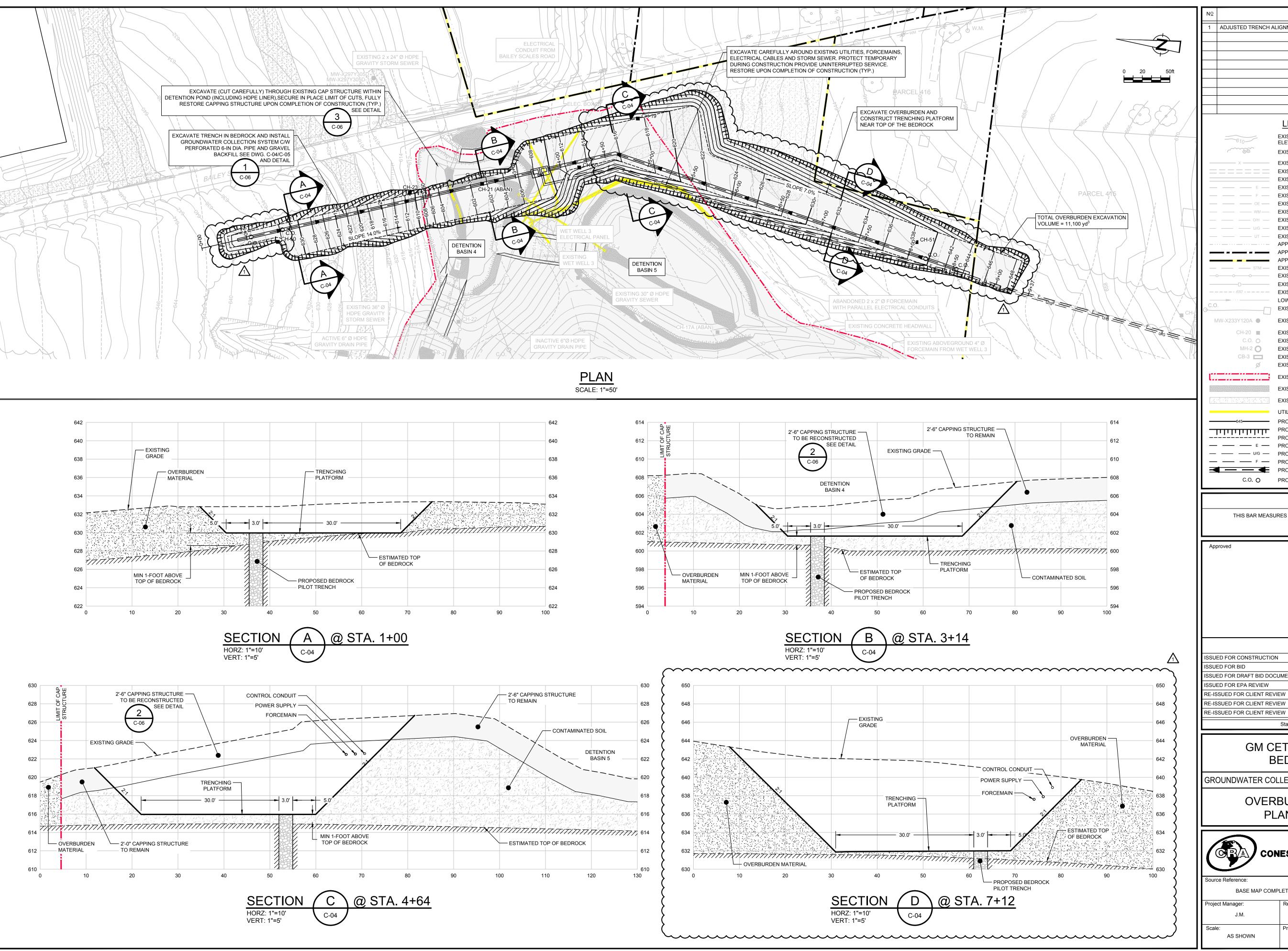
SITE WORKS OVERALL AREA

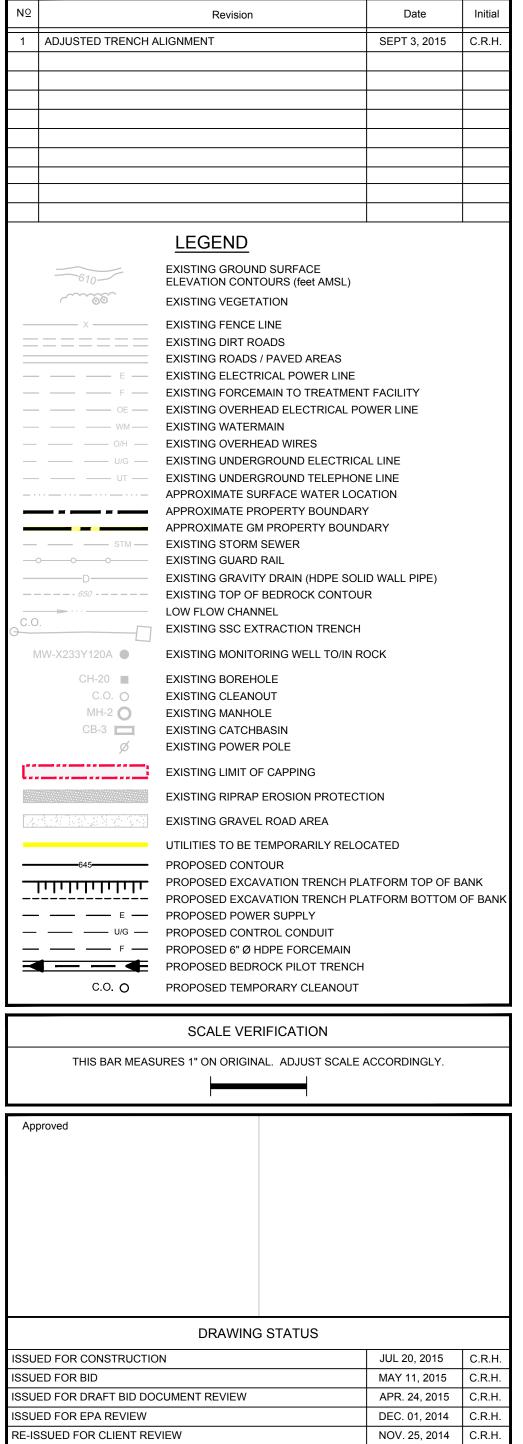
CONESTOGA-ROVERS & ASSOCIATES


BASE MAP COMPLETED BY AIR-LAND SURVEYS, FLINT, MI. APRIL 2001


 Project Manager:
 Reviewed By:
 Date:


 J.M.
 C.R.H.
 JULY 2015


 Scale:
 Project №:
 Report №:
 Drawing №:

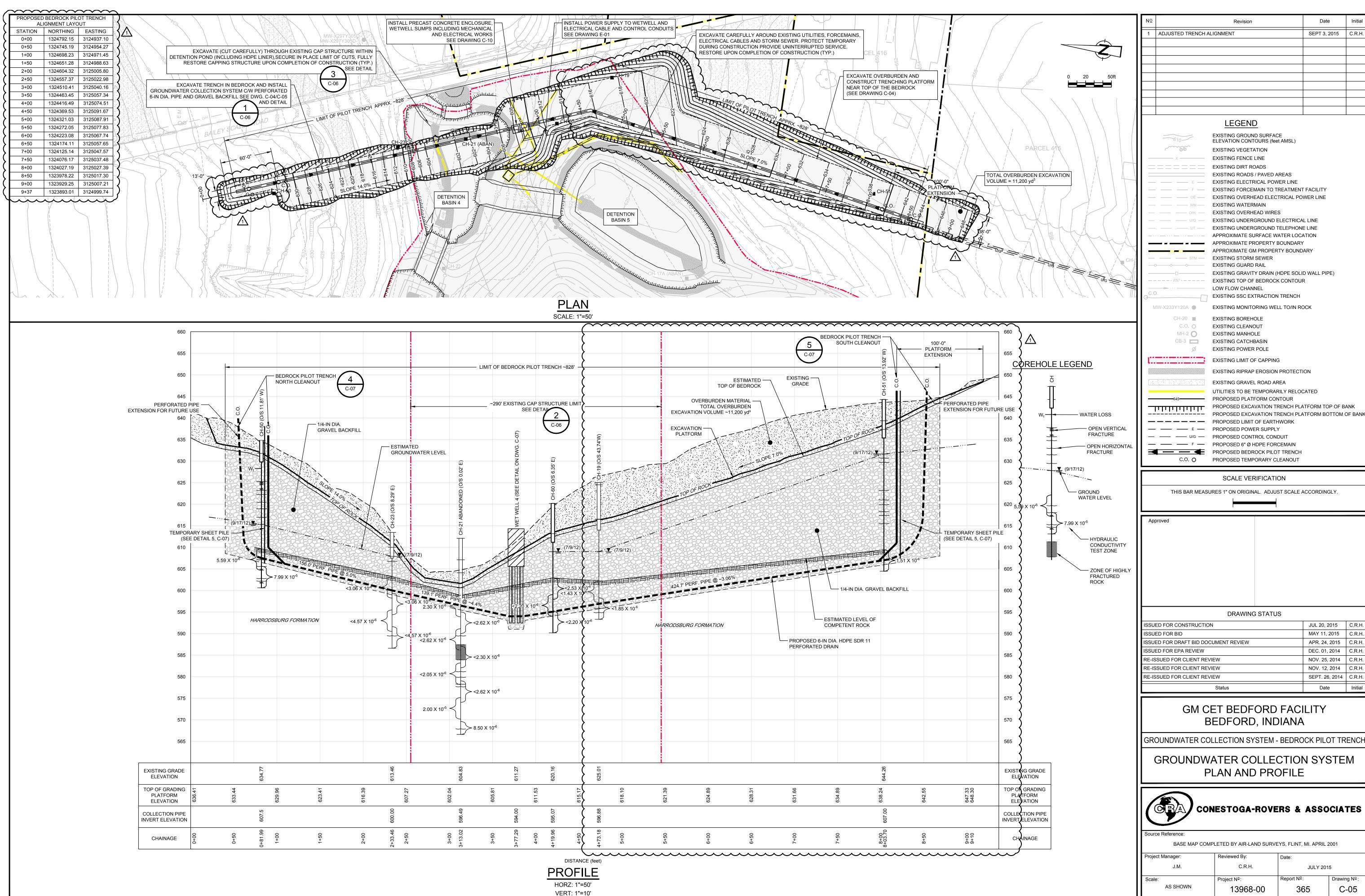

 1"=50'
 13968-00
 365
 C-02

GM CET BEDFORD FACILITY BEDFORD, INDIANA

GROUNDWATER COLLECTION SYSTEM - BEDROCK PILOT TRENCI

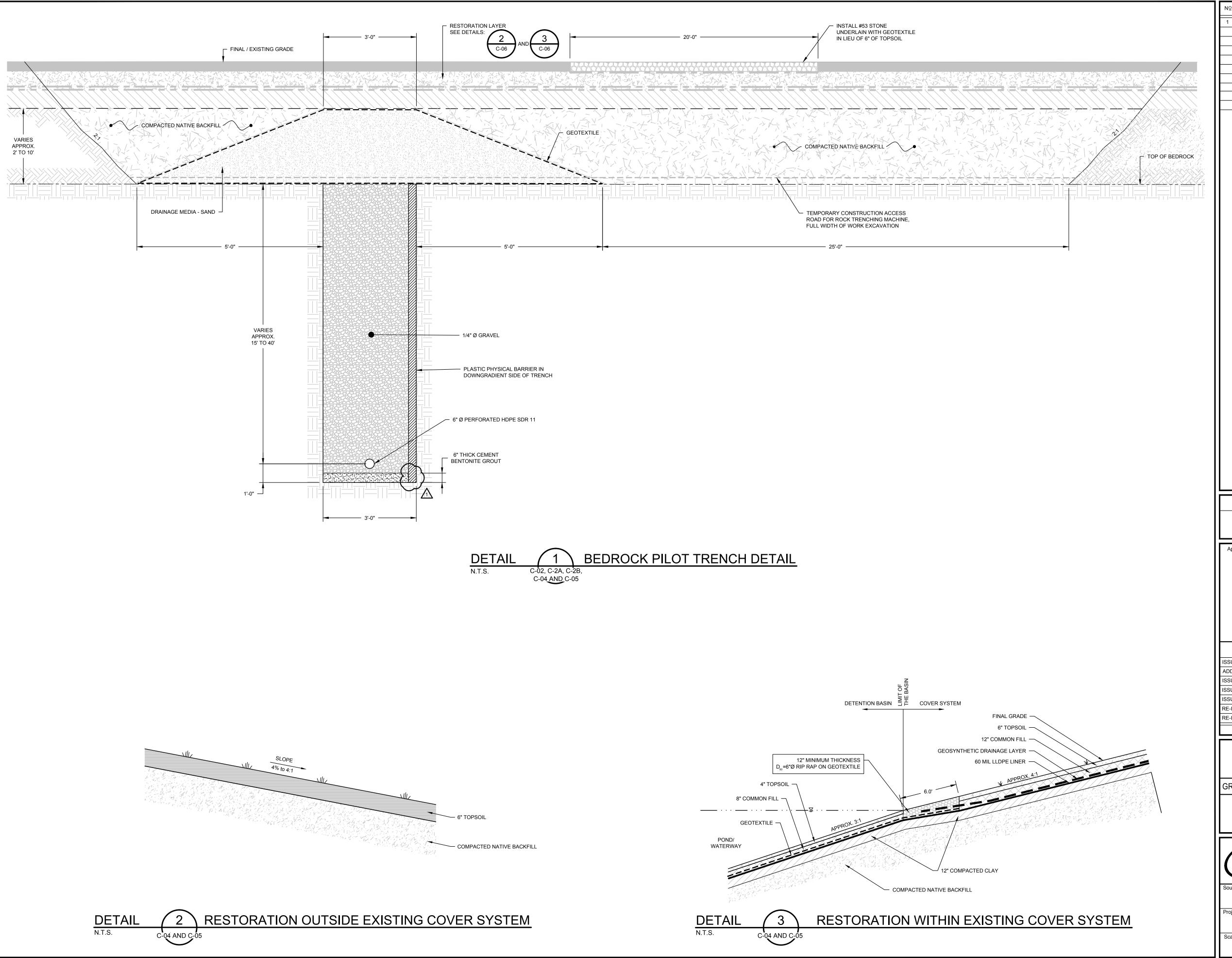
OVERBURDEN EXCAVATION PLAN AND SECTIONS

CONESTOGA-ROVERS & ASSOCIATES


BASE MAP COMPLETED BY AIR-LAND SURVEYS, FLINT, MI. APRIL 2001

C.R.H. JULY 2015 Drawing Nº: Project Nº: AS SHOWN 365 C-04 13968-00

NOV. 12, 2014 C.R.H.


SEPT. 26, 2014 | C.R.H.

Date Initial

13968-00(365)CI-WA006 SEP 3/2015

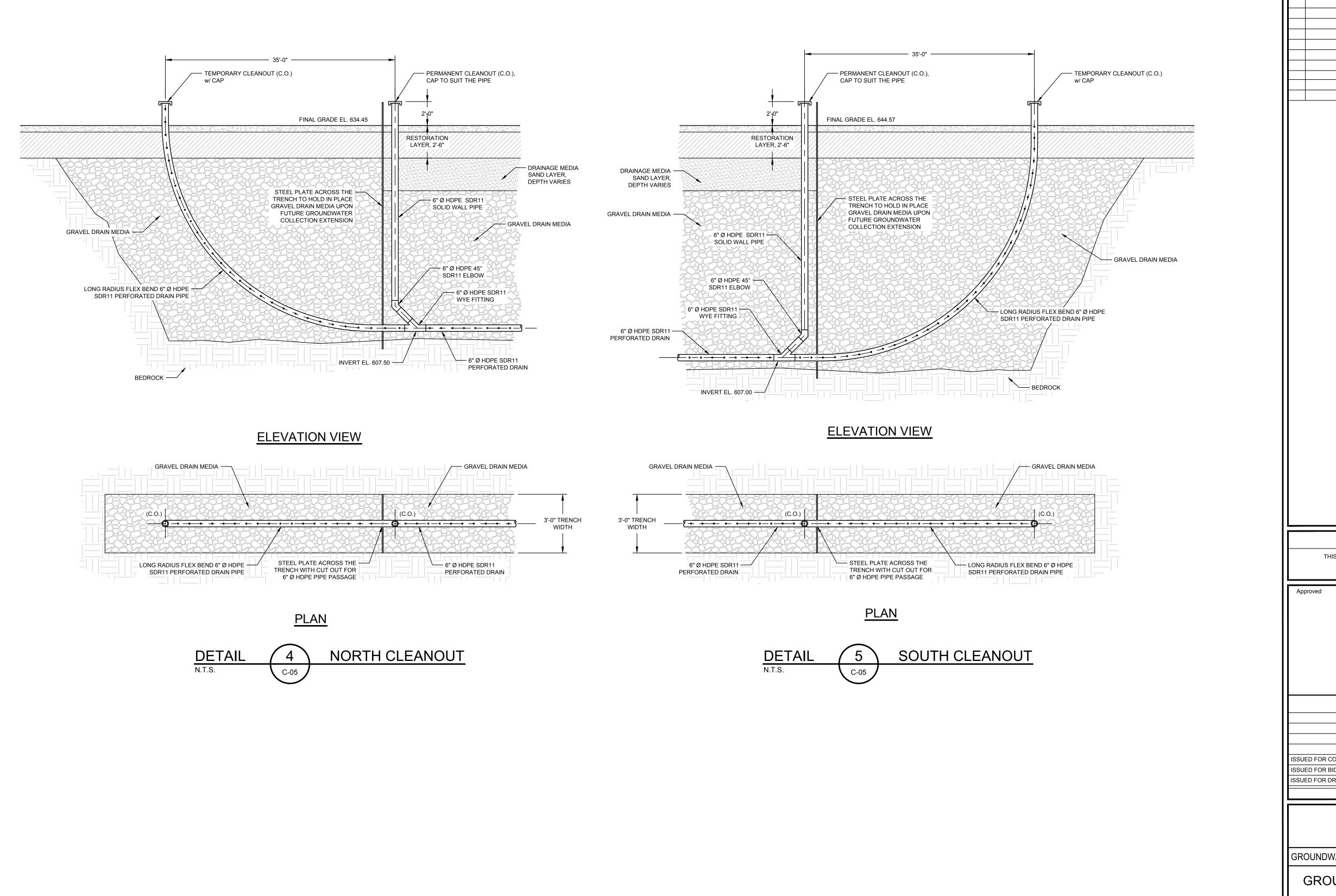
Drawing Nº

1	Revision	Date	Initia
. '	CORRECTED SHEET PILING DETAIL	AUG 24, 2015	C.R.F
	SCALE VERIFICATION		
	SCALE VERIFICATION THIS BAR MEASURES 1" ON ORIGINAL. ADJUST SCALE A	ACCORDINGLY.	
		ACCORDINGLY.	
Арр		ACCORDINGLY.	
Арр	THIS BAR MEASURES 1" ON ORIGINAL. ADJUST SCALE A	ACCORDINGLY.	
Арр	THIS BAR MEASURES 1" ON ORIGINAL. ADJUST SCALE A	ACCORDINGLY.	
Арр	THIS BAR MEASURES 1" ON ORIGINAL. ADJUST SCALE A	ACCORDINGLY.	
Арр	THIS BAR MEASURES 1" ON ORIGINAL. ADJUST SCALE A	ACCORDINGLY.	
Арр	THIS BAR MEASURES 1" ON ORIGINAL. ADJUST SCALE A	ACCORDINGLY.	
Арр	THIS BAR MEASURES 1" ON ORIGINAL. ADJUST SCALE A	ACCORDINGLY.	
Арр	THIS BAR MEASURES 1" ON ORIGINAL. ADJUST SCALE A	ACCORDINGLY.	
Арр	THIS BAR MEASURES 1" ON ORIGINAL. ADJUST SCALE A	ACCORDINGLY.	
Арр	THIS BAR MEASURES 1" ON ORIGINAL. ADJUST SCALE A	ACCORDINGLY.	
	THIS BAR MEASURES 1" ON ORIGINAL. ADJUST SCALE A	JUL 20, 2015	C.R.H
ISSUE	THIS BAR MEASURES 1" ON ORIGINAL. ADJUST SCALE A Droved DRAWING STATUS ED FOR CONSTRUCTION ENDUM #1	JUL 20, 2015 MAY 26, 2015	C.R.H
ISSUE ADDE ISSUE	DRAWING STATUS ED FOR CONSTRUCTION ENDUM #1 ED FOR BID	JUL 20, 2015 MAY 26, 2015 MAY 11, 2015	C.R.H
ISSUE ADDE ISSUE	THIS BAR MEASURES 1" ON ORIGINAL. ADJUST SCALE A Drawing STATUS ED FOR CONSTRUCTION ENDUM #1 ED FOR BID ED FOR DRAFT BID DOCUMENT REVIEW	JUL 20, 2015 MAY 26, 2015 MAY 11, 2015 APR. 24, 2015	C.R.H C.R.H
ISSUE ADDE ISSUE ISSUE	THIS BAR MEASURES 1" ON ORIGINAL. ADJUST SCALE A DRAWING STATUS ED FOR CONSTRUCTION ENDUM #1 ED FOR BID ED FOR DRAFT BID DOCUMENT REVIEW ED FOR EPA REVIEW	JUL 20, 2015 MAY 26, 2015 MAY 11, 2015 APR. 24, 2015 DEC. 01, 2014	C.R.H C.R.H C.R.H
ISSUE ADDE ISSUE ISSUE RE-IS	THIS BAR MEASURES 1" ON ORIGINAL. ADJUST SCALE A Drawing STATUS ED FOR CONSTRUCTION ENDUM #1 ED FOR BID ED FOR DRAFT BID DOCUMENT REVIEW	JUL 20, 2015 MAY 26, 2015 MAY 11, 2015 APR. 24, 2015	C.R.H C.R.H C.R.H C.R.H
ISSUE ADDE ISSUE ISSUE RE-IS	THIS BAR MEASURES 1" ON ORIGINAL. ADJUST SCALE A DRAWING STATUS ED FOR CONSTRUCTION ENDUM #1 ED FOR BID ED FOR DRAFT BID DOCUMENT REVIEW ED FOR EPA REVIEW SUED FOR CLIENT REVIEW	JUL 20, 2015 MAY 26, 2015 MAY 11, 2015 APR. 24, 2015 DEC. 01, 2014 NOV. 25, 2014	C.R.H C.R.H C.R.H C.R.H C.R.H

GROUNDWATER COLLECTION SYSTEM - BEDROCK PILOT TRENCH

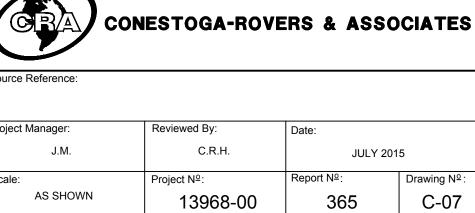
GROUNDWATER COLLECTION SYSTEM DETAILS (1 OF 2)

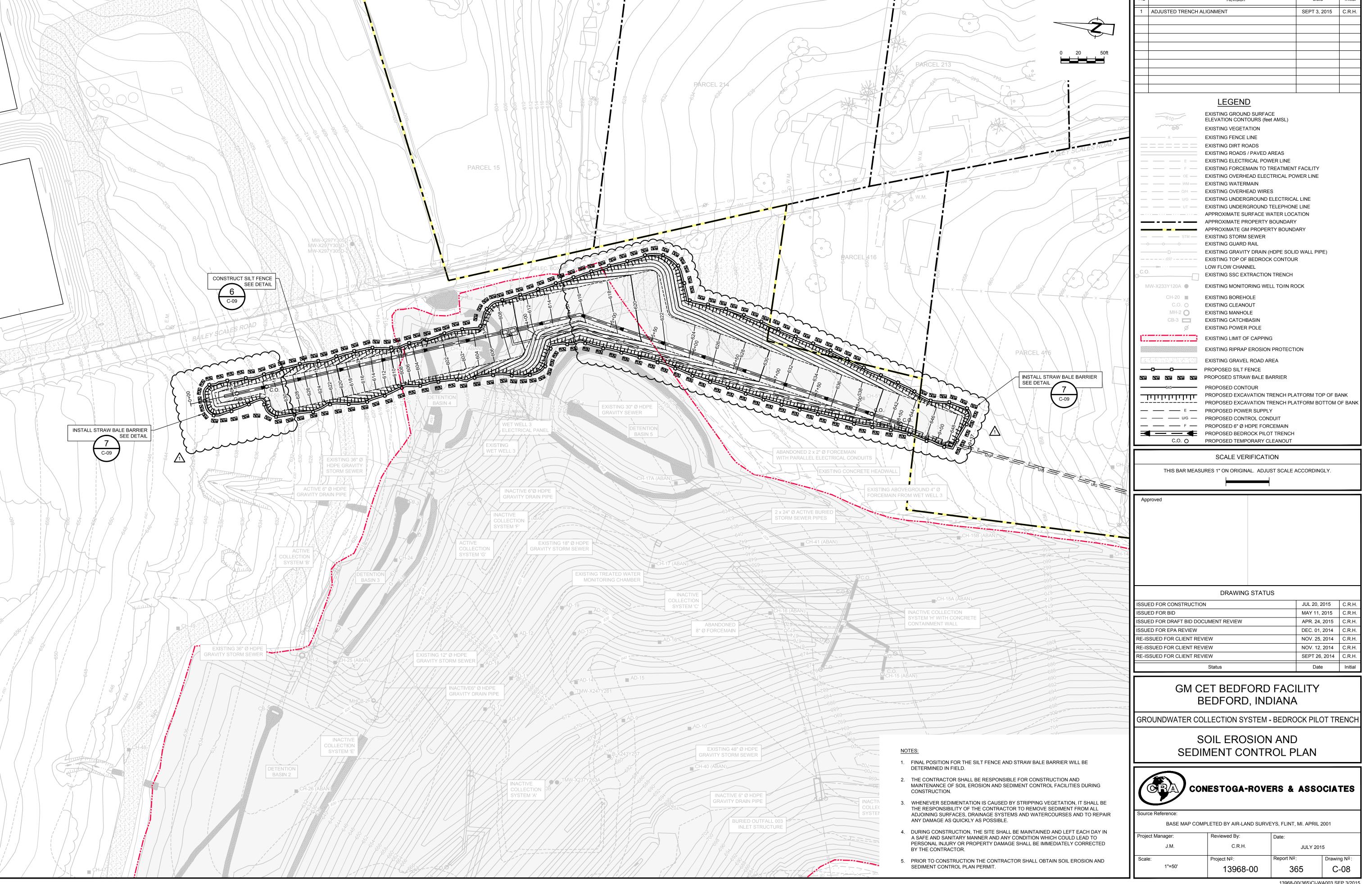
CONESTOGA-ROVERS & ASSOCIATES

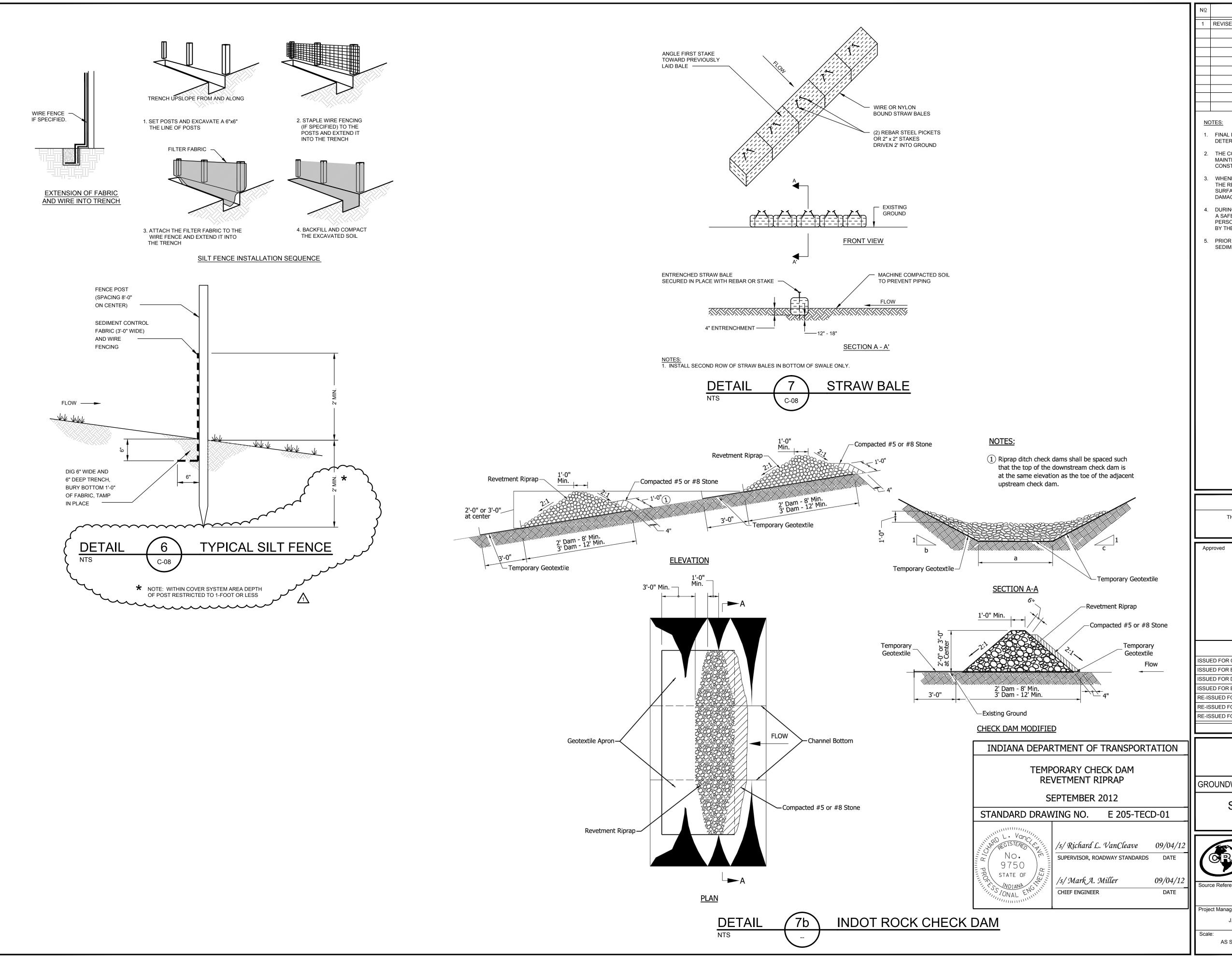

 Source Reference:

 Project Manager:
 Reviewed By:
 Date:

 J.M.
 C.R.H.
 JULY 2015


 Scale:
 Project №:
 Report №:
 Drawing №


 AS SHOWN
 13968-00
 365
 C-0



	ERIFICATION		
SCALE VE THIS BAR MEASURES 1" ON ORIG		ACCORDINGLY.	
THIS BAR MEASURES 1" ON ORIG		ACCORDINGLY.	
		ACCORDINGLY.	
THIS BAR MEASURES 1" ON ORIG		ACCORDINGLY.	
THIS BAR MEASURES 1" ON ORIG		ACCORDINGLY.	
THIS BAR MEASURES 1" ON ORIG		ACCORDINGLY.	
THIS BAR MEASURES 1" ON ORIG		ACCORDINGLY.	
THIS BAR MEASURES 1" ON ORIG		ACCORDINGLY.	
THIS BAR MEASURES 1" ON ORIG		ACCORDINGLY.	
THIS BAR MEASURES 1" ON ORIG	NAL. ADJUST SCALE	ACCORDINGLY.	
THIS BAR MEASURES 1" ON ORIG	NAL. ADJUST SCALE	ACCORDINGLY.	
Approved DRAWIN ISSUED FOR CONSTRUCTION	NAL. ADJUST SCALE	JUL 20, 2015	
Approved DRAWIN	NAL. ADJUST SCALE		C.R.
Approved Approved DRAWIN ISSUED FOR CONSTRUCTION ISSUED FOR BID	NAL. ADJUST SCALE	JUL 20, 2015 MAY 11, 2015	C.R.I
Approved Approved DRAWIN ISSUED FOR CONSTRUCTION ISSUED FOR BID ISSUED FOR DRAFT BID DOCUMENT REVIEW Status	INAL. ADJUST SCALE	JUL 20, 2015 MAY 11, 2015 APR. 24, 2015 Date	C.R.
Approved Approved DRAWIN ISSUED FOR CONSTRUCTION ISSUED FOR BID ISSUED FOR DRAFT BID DOCUMENT REVIEW Status GM CET BEDI	INAL. ADJUST SCALE	JUL 20, 2015 MAY 11, 2015 APR. 24, 2015 Date	C.R.
Approved Approved DRAWIN ISSUED FOR CONSTRUCTION ISSUED FOR BID ISSUED FOR DRAFT BID DOCUMENT REVIEW Status GM CET BEDI BEDFORI	FORD FAC	JUL 20, 2015 MAY 11, 2015 APR. 24, 2015 Date	C.R. C.R.
Approved Approved DRAWIN ISSUED FOR CONSTRUCTION ISSUED FOR BID ISSUED FOR DRAFT BID DOCUMENT REVIEW Status GM CET BEDI	FORD FAC	JUL 20, 2015 MAY 11, 2015 APR. 24, 2015 Date	C.R.I C.R.I Initia

DETAILS (2 OF 2)

1	REVISED DETAIL 6 - SILT FENCE POST MIN. DEPTH	SEPT 3, 2015	C.R.I

Date

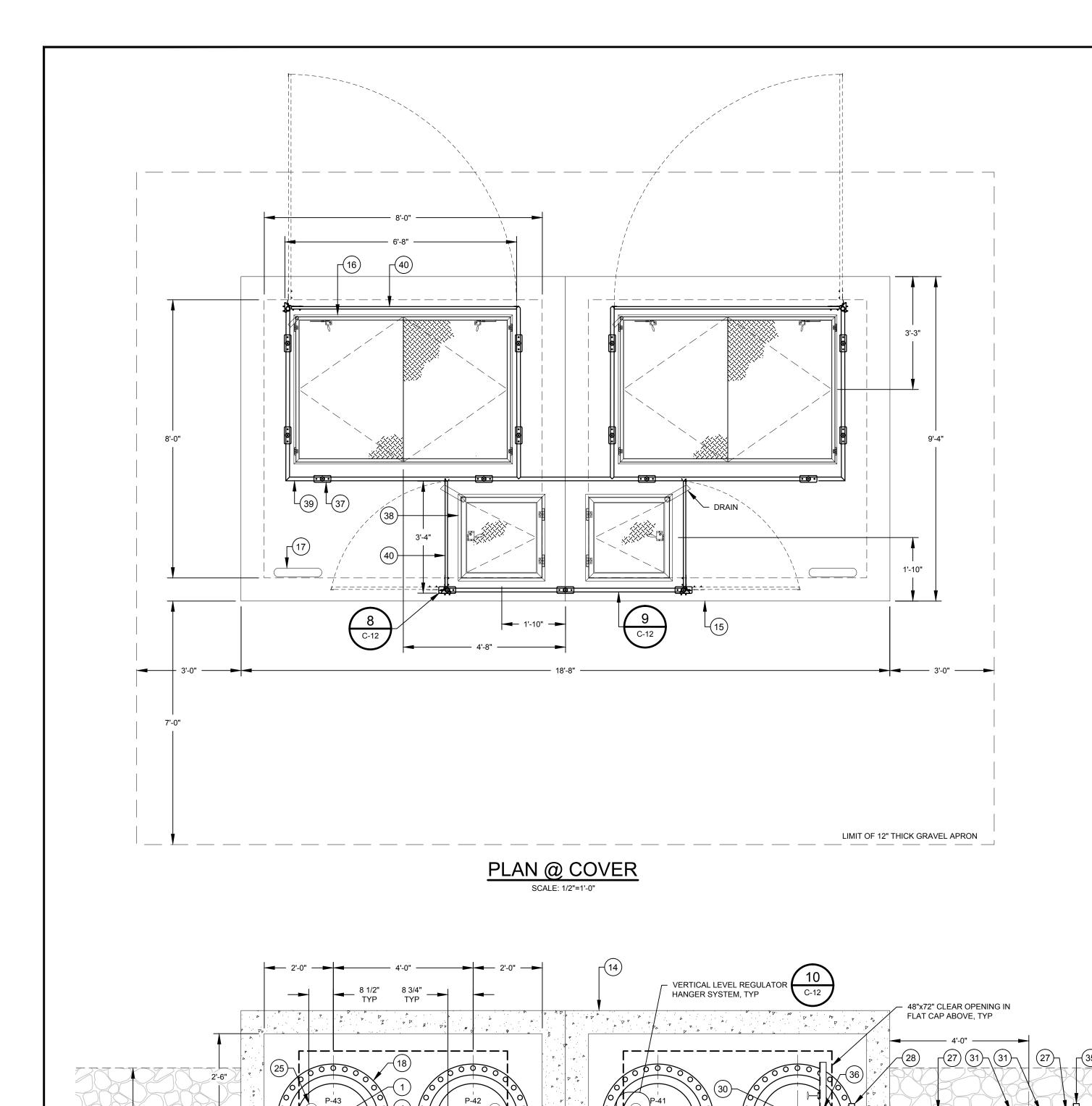
- I. FINAL POSITION FOR THE SILT FENCE AND STRAW BALE BARRIER WILL BE DETERMINED IN FIELD.
- THE CONTRACTOR SHALL BE RESPONSIBLE FOR CONSTRUCTION AND MAINTENANCE OF SOIL EROSION AND SEDIMENT CONTROL FACILITIES DURING CONSTRUCTION.
- WHENEVER SEDIMENTATION IS CAUSED BY STRIPPING VEGETATION, IT SHALL BE THE RESPONSIBILITY OF THE CONTRACTOR TO REMOVE IT FROM ALL ADJOINING SURFACES, DRAINAGE SYSTEMS AND WATERCOURSES AND TO REPAIR ANY DAMAGE AS QUICKLY AS POSSIBLE.
- DURING CONSTRUCTION, THE SITE SHALL BE MAINTAINED AND LEFT EACH DAY IN A SAFE AND SANITARY MANNER AND ANY CONDITION WHICH COULD LEAD TO PERSONAL INJURY OR PROPERTY DAMAGE SHALL BE IMMEDIATELY CORRECTED BY THE CONTRACTOR.
- PRIOR TO CONSTRUCTION THE CONTRACTOR SHALL OBTAIN SOIL EROSION AND SEDIMENT CONTROL PLAN PERMIT.

SCALE VERIFICATION THIS BAR MEASURES 1" ON ORIGINAL. ADJUST SCALE ACCORDINGLY.

DRAWING STATUS JUL 20, 2015 C.R.H. SSUED FOR CONSTRUCTION MAY 11, 2015 C.R.H. SSUED FOR BID SSUED FOR DRAFT BID DOCUMENT REVIEW APR. 24, 2015 C.R.H. SSUED FOR EPA REVIEW DEC. 01, 2014 C.R.H. RE-ISSUED FOR CLIENT REVIEW NOV. 25, 2014 C.R.H. RE-ISSUED FOR CLIENT REVIEW NOV. 12, 2014 C.R.H. RE-ISSUED FOR CLIENT REVIEW SEPT. 26, 2014 C.R.H. Date Initial

GM CET BEDFORD FACILITY BEDFORD, INDIANA

GROUNDWATER COLLECTION SYSTEM - BEDROCK PILOT TRENCH

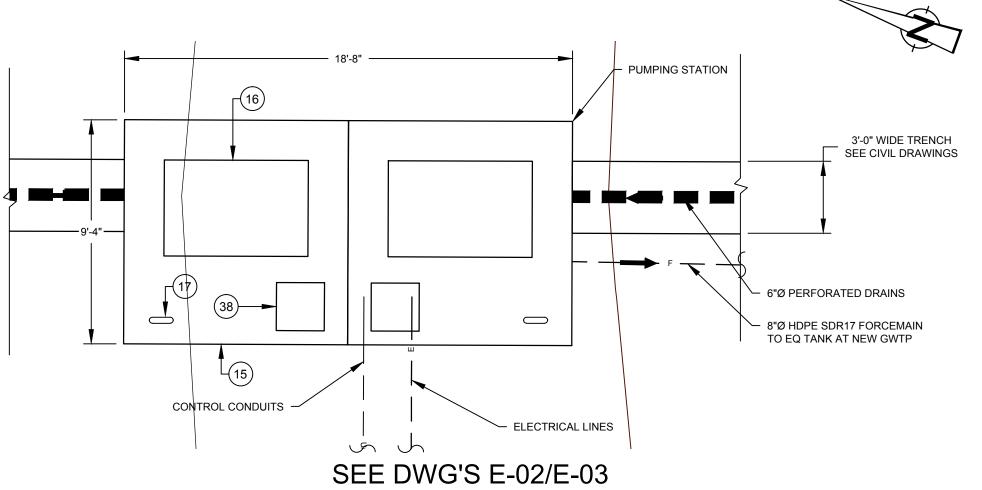

SOILS EROSION AND SEDIMENT CONTROL DETAILS

CONESTOGA-ROVERS & ASSOCIATES

ource Reference:

C.R.H. J.M. JULY 2015 Drawing Nº: Project Nº: AS SHOWN 13968-00 C-09

24"x24" CLEAR OPENING IN -FLAT CAP ABOVE, TYP


SEE DRAWINGS C-02 AND C-03 FOR WET WELL LOCATION AND ORIENTATION

PLAN ABOVE EL 612.00

SCALE: 1/2"=1'-0"

COLLECTION TRENCH

LIMITS, SEE CIVIL DWGS

TO DIESEL PUMP

- FROM DIESEL PUMP

8" Ø DR17 HDPE

FORCEMAIN TO EQ TANK AT NEW GWTP

- PROVIDE WATER TIGHT

SEAL, TYP

MARK	DESCRIPTION
1	EPG-ELECTRICAL SUBMERSIBLE PUMP SERIES S60, MODEL 60-6, 25 I 3 PHASE, 460 VOLTS, 3 INCH DISCHARGE, VERTICAL SUMP DRAINER, 340 USGPM AT TDH=166FT. C/W STARTER CONTROL PANEL
2	3"Ø CS GALVANIZED PIPE
3	EPG 3"Ø CHECK VALVE, TYPE CVSE300
4	EPG 3"Ø PITLESS ADAPTOR NW SERIES MTD ON CHANNEL AT MID PO
5	3"Ø NPT FLANGE ADAPTOR
6	C8X11.5 STEEL CHANNEL WELD OR BOLT TO 24" STEEL PIPE
7	EPG 2"Ø PERFORATED PVC STILLING WELL MOUNTED TO C-CHANNE WITH 2 U-BOLT CLAMPS
8	3"Ø WAFER STYLE BUTTERFLY VALVE C/W HANDLE AND 10 POSITIO NOTCH PLATE
9	3"Ø x 8"Ø CS GALVANIZED CONCENTRIC INCREASER
10	30"Ø X 18" LONG CS GALVANIZED PIPE C/W FLANGE
11	30"Ø HDPE ADAPTOR RING AND STEEL BACKING FLANGE
12	STILLING WELL LATERAL SUPPORT MOUNTED TO 30"Ø HDPE SDR9 PI SUMP AT 12" ABOVE WELL PIPE PERFORATIONS AND BOTTOM OF WE PIPE AND AT MID POINT, TYP
13	8"Ø DR17 HDPE FORCEMAIN
14	8'-0"x8'-0"x8'-0" HIGH PRECAST CONCRETE VAULT SECTION
15	8'-0"x8'-0" PRECAST CONCRETE FLAT CAP C/W CAST-IN-PLACE BILC HATCH, VERIFY SIZE WITH HATCH SUPPLIER
16	4'-0"x6'-0" CLEAR OPENING, ACCESS DOOR TYPE JD, BILCO OR EQUA C/W LOCK, HANDLE, CAST INTO CAP, VERIFY WITH HATCH SUPPLIE
17	3"Ø GALVANIZED VENT PIPE C/W GOOSE NECK AND INSECT SCREE
18	30"Ø HDPE SDR9 PIPE SUMP, WITH PERFORATED BOTTOM.
19	8"Ø CS GALVANIZED PIPE
20	3"Ø WELDOLET
21	6"Ø U-BOLT CLAMP AND FLOOR STANCHION
22	3"Ø x 90° THREADED CS GALVANIZED THREADED ELBOW
23	1 1/4"Ø BOLTS, NUTS AND WASHERS TO SUIT
24	6"Ø CS GALVANIZED ELBOW
25	VERTICAL LEVEL REGULATOR HANGER ASSEMBLY WITH FIBERGLAS FRP GUIDE RAIL I-BEAM MOUNTED AT BOTTOM TO WELL PIPE BASE, CHANNEL AT TOP OF WELL PIPE AND AT ITEM 15 UP TO U/S OF ITEM WITH CHAIN HOOK
26	4"Ø DR17 HDPE PIPE
27	6"Ø CS GALVANIZED PIPE
28	6"Ø VICTAULIC SNAP-JOINT (STYLE 78) WITH GASKET SEALS
29	8"Ø VICTAULIC SNAP-JOINT (STYLE 78) WITH GASKET SEALS
30	3"Ø THREADED REMOVAL LEG WELDED TO HEEL OF 6"Ø ELBOW UP U/S OF ITEM 16
31	6"Ø x 90° DR17 HDPE LR ELBOW
32	4"Ø x 90° DR17 HDPE ELBOW
33	8"x4" HDPE REDUCER TEE
34	4"Ø VICTAULIC RIGID COUPLING (STYLE HP-70) WITH CAP END
35	6"Ø VICTAULIC RIGID COUPLING (STYLE HP-70) WITH CAP END
36	6"Ø U-BOLT CLAMP
37	GUARDRAIL POST ANCHORAGE
38	2'-0"x2'-0" CLEAR OPENING, ACCESS DOOR TYPE J, BILCO OR EQUA C/W LOCK, HANDLE, CAST INTO CAP, VERIFY WITH HATCH SUPPLIE
39	42" STD OSHA RAILING SYSTEM WITH MID-RAIL, 1½"Ø GALVANIZED PI C/W CLAMP COMPONENTS
40	SELF CLOSING GALVANIZED LADDER SAFETY GATE
41	ALUMINUM ACCESS LADDER
42	30"Ø x 12" LONG CS GALVANIZED PIPE C/W FLANGE
43	6"Ø DR17 HDPE PIPE

ALL EXPOSED PIPING FROM PITLESS ADAPTOR TO BE PROTECTED WITH 2" INSULATION TO EXIT FROM CHAMBER ALL PIPING, VALVES, FITTINGS AND PIPE SUPPORTS, ACCESSORIES, EQUIPMENT AND SAFETY DEVICES WITHIN CHAMBER TO BE CS GALVANIZED UNLESS NOTED OTHERWISE

<u> </u>	
	SCALE VERIFICATION
	SCALE VERIFICATION THIS BAR MEASURES 1" ON ORIGINAL. ADJUST SCALE ACCORDINGLY.

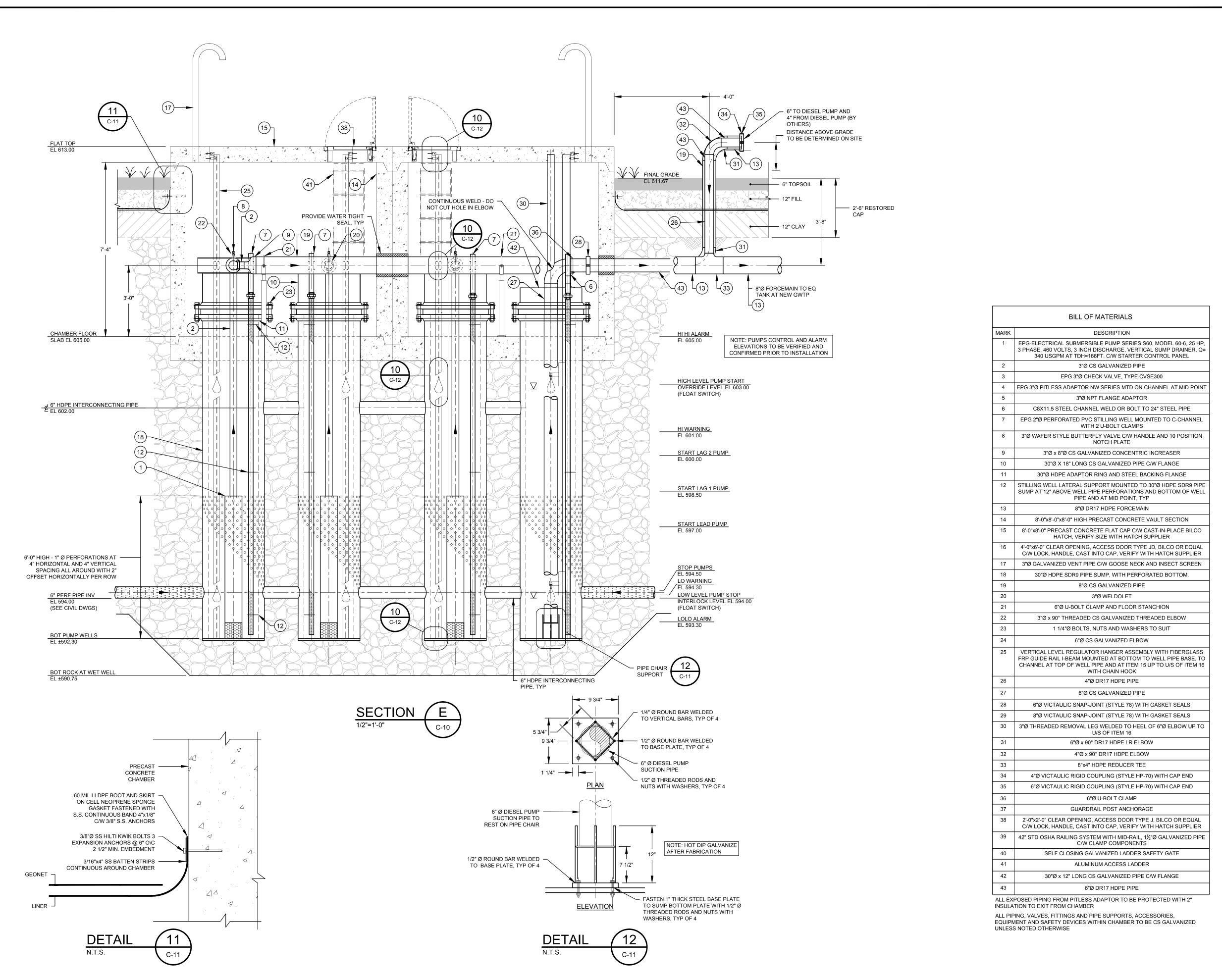
0 6 1ft 2ft

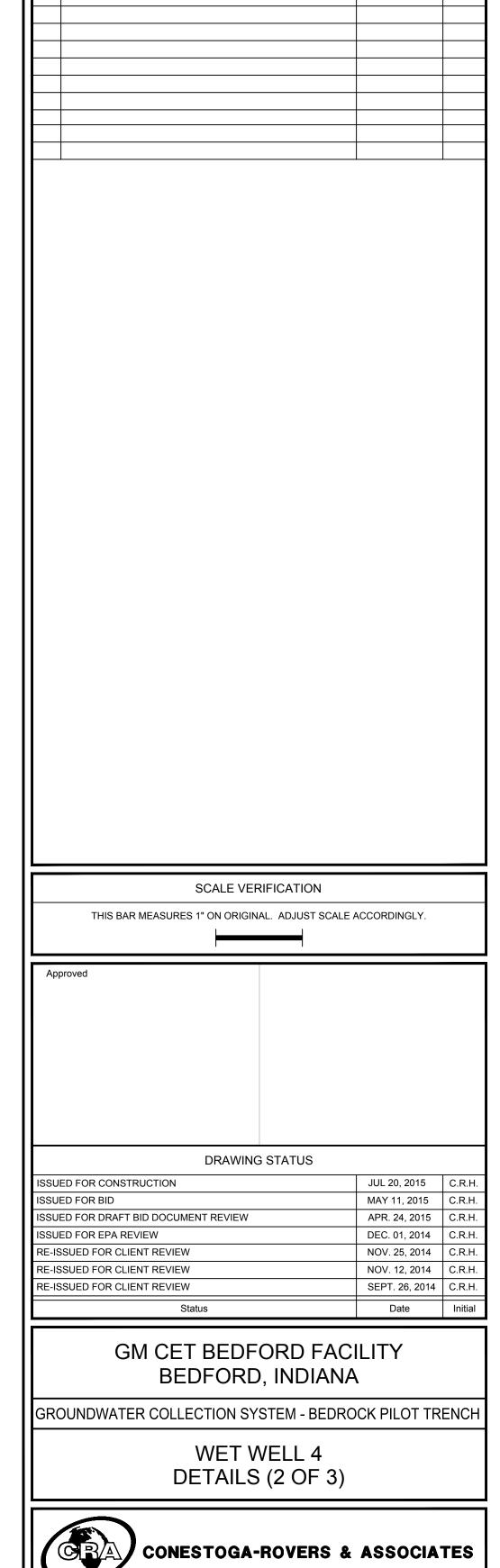
DRAWING S	TATUS		
SSUED FOR CONSTRUCTION		JUL 20, 2015	C.R.H.
SSUED FOR BID		MAY 11, 2015	C.R.H.
SSUED FOR DRAFT BID DOCUMENT REVIEW		APR. 24, 2015	C.R.H.
SSUED FOR EPA REVIEW		DEC. 01, 2014	C.R.H.
E-ISSUED FOR CLIENT REVIEW		NOV. 25, 2014	C.R.H.
E-ISSUED FOR CLIENT REVIEW		NOV. 12, 2014	C.R.H.
E-ISSUED FOR CLIENT REVIEW		SEPT 26 2014	C.R.H.

GM CET BEDFORD FACILITY BEDFORD, INDIANA

GROUNDWATER COLLECTION SYSTEM - BEDROCK PILOT TRENCH

WET WELL 4 DETAILS (1 OF 3)




CONESTOGA-ROVERS & ASSOCIATES

Source Reference:

C.R.H. J.M. JULY 2015 Drawing Nº: Project Nº: AS SHOWN 13968-00 C-10

Date Initial

Source Reference:

Project Manager:

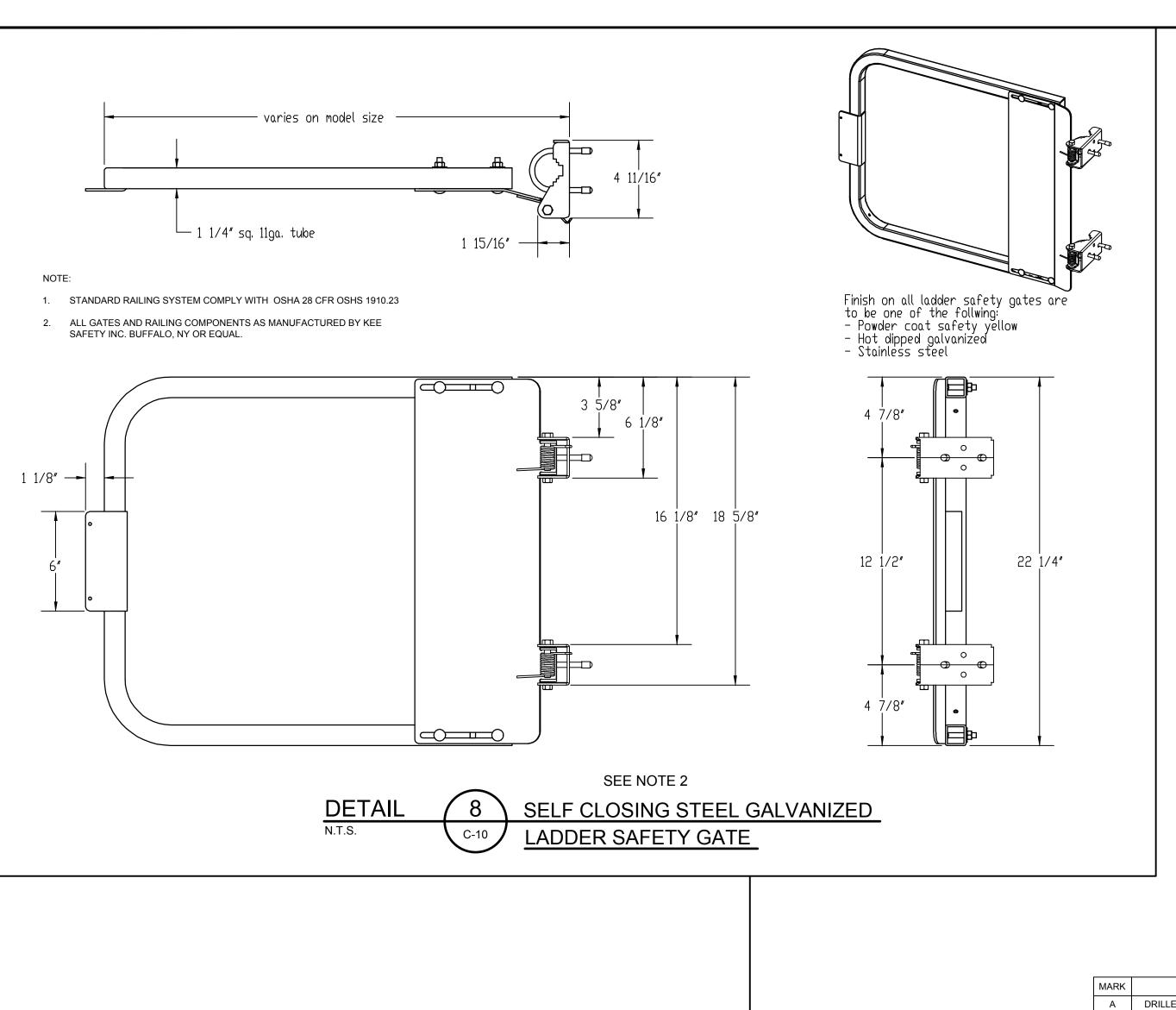
J.M.

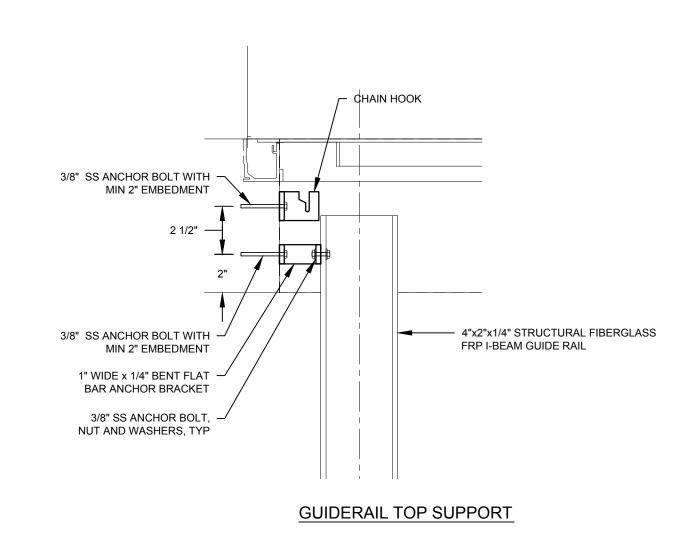
AS SHOWN

C.R.H.

13968-00

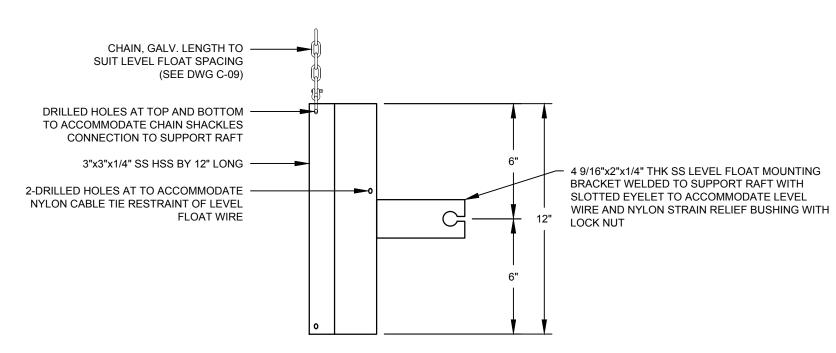
Proiect Nº:

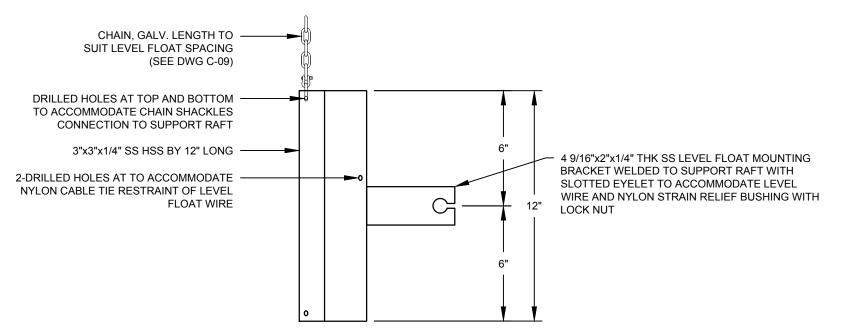

Date

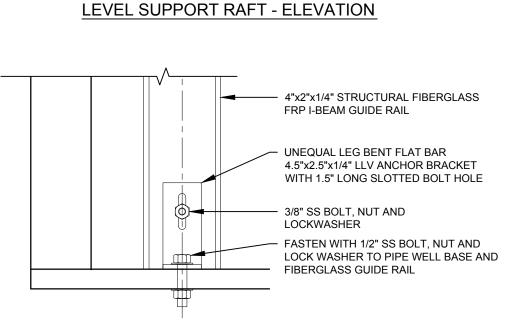

Revision

Drawing Nº:

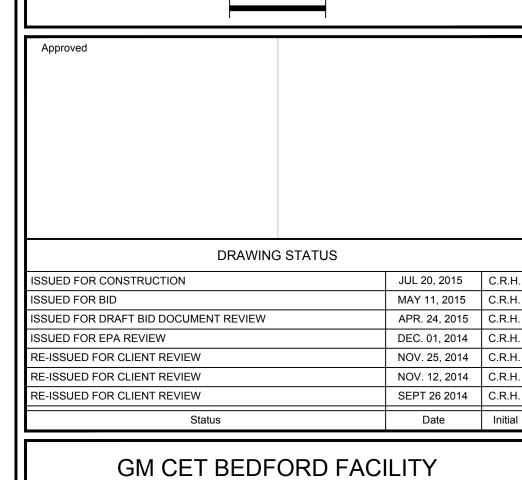
C-11


JULY 2015





C8X11.5 STEEL CHANNEL WELD OR BOLT TO 24" STEEL PIPE 3/8" SS ANCHOR BOLTS, NUTS AND WASHERS, 4"x2"x1/4" STRUCTURAL FIBERGLASS FRP I-BEAM GUIDE 30"Ø X 1'-6" LONG CS → GALVANIZED PIPE C/W FLANGE

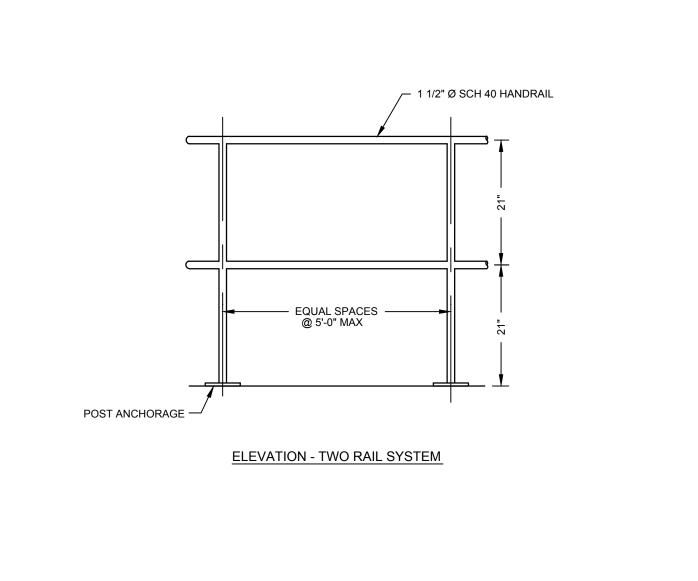

GUIDERAIL UPPER SUPPORT

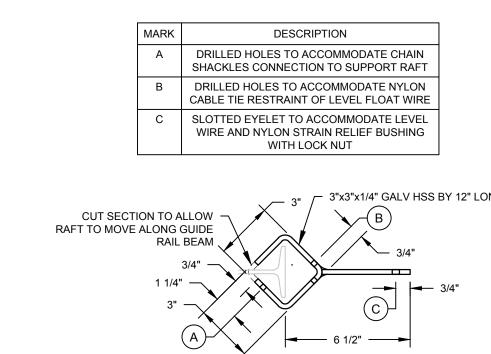
GUIDERAIL BASE ANCHOR VERTICAL LEVEL REGULATOR HANGER SYSTEM

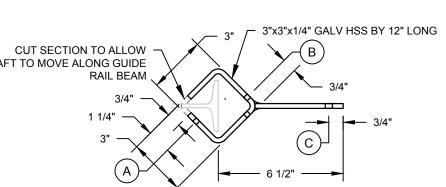
SCALE VERIFICATION

THIS BAR MEASURES 1" ON ORIGINAL. ADJUST SCALE ACCORDINGLY.

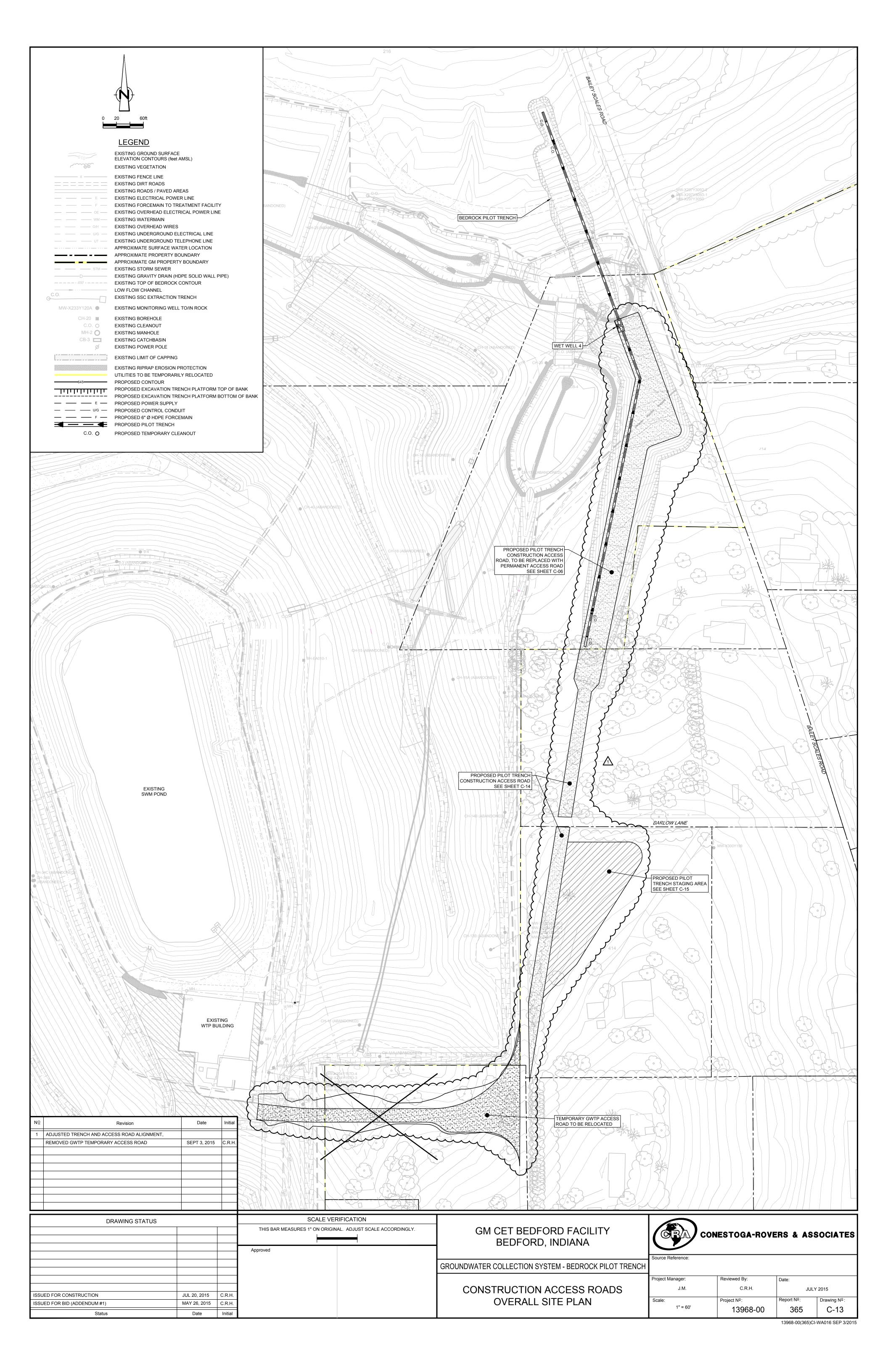
BEDFORD, INDIANA GROUNDWATER COLLECTION SYSTEM - BEDROCK PILOT TRENCH

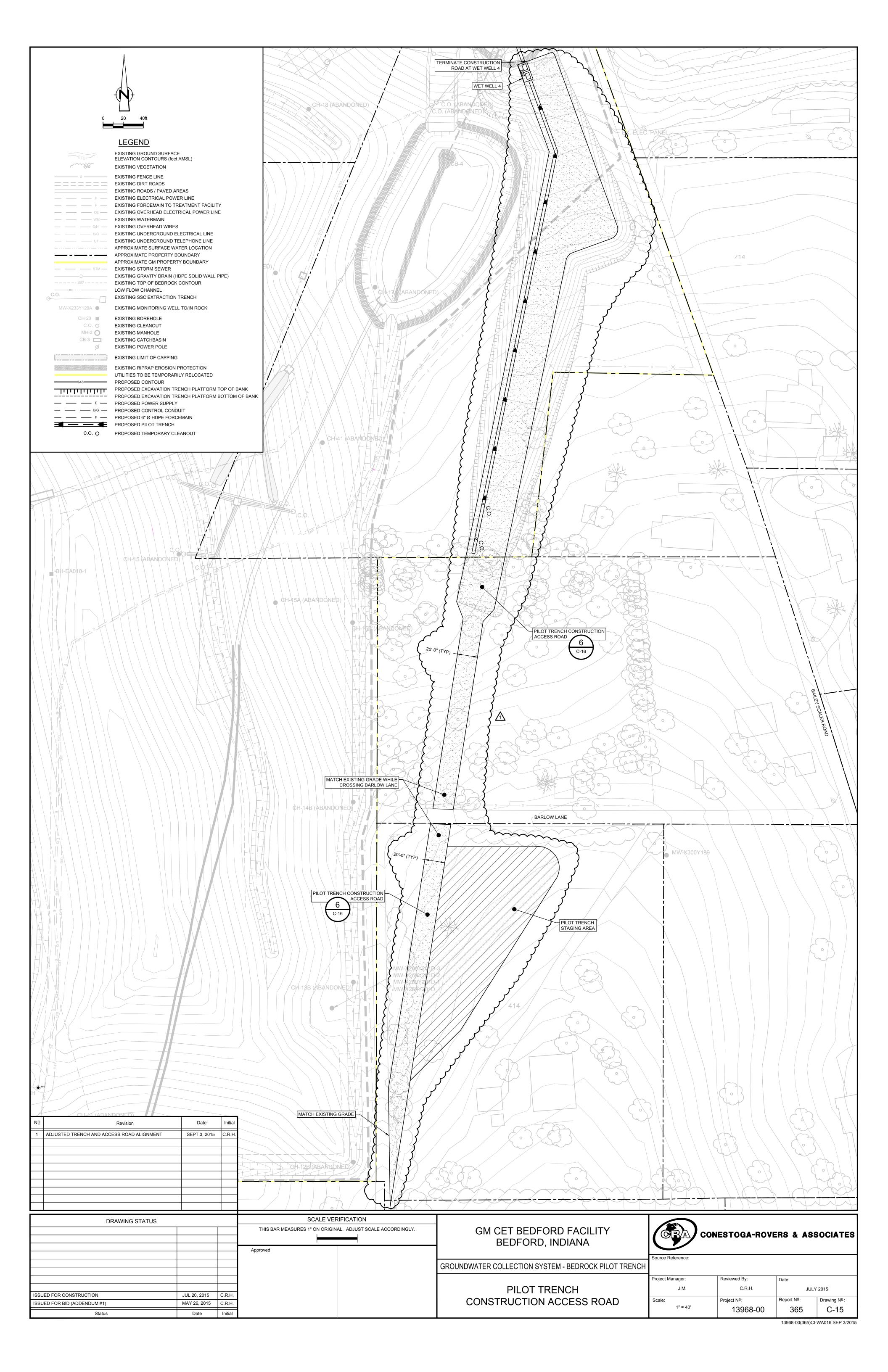

WET WELL 4 DETAILS (3 OF 3)

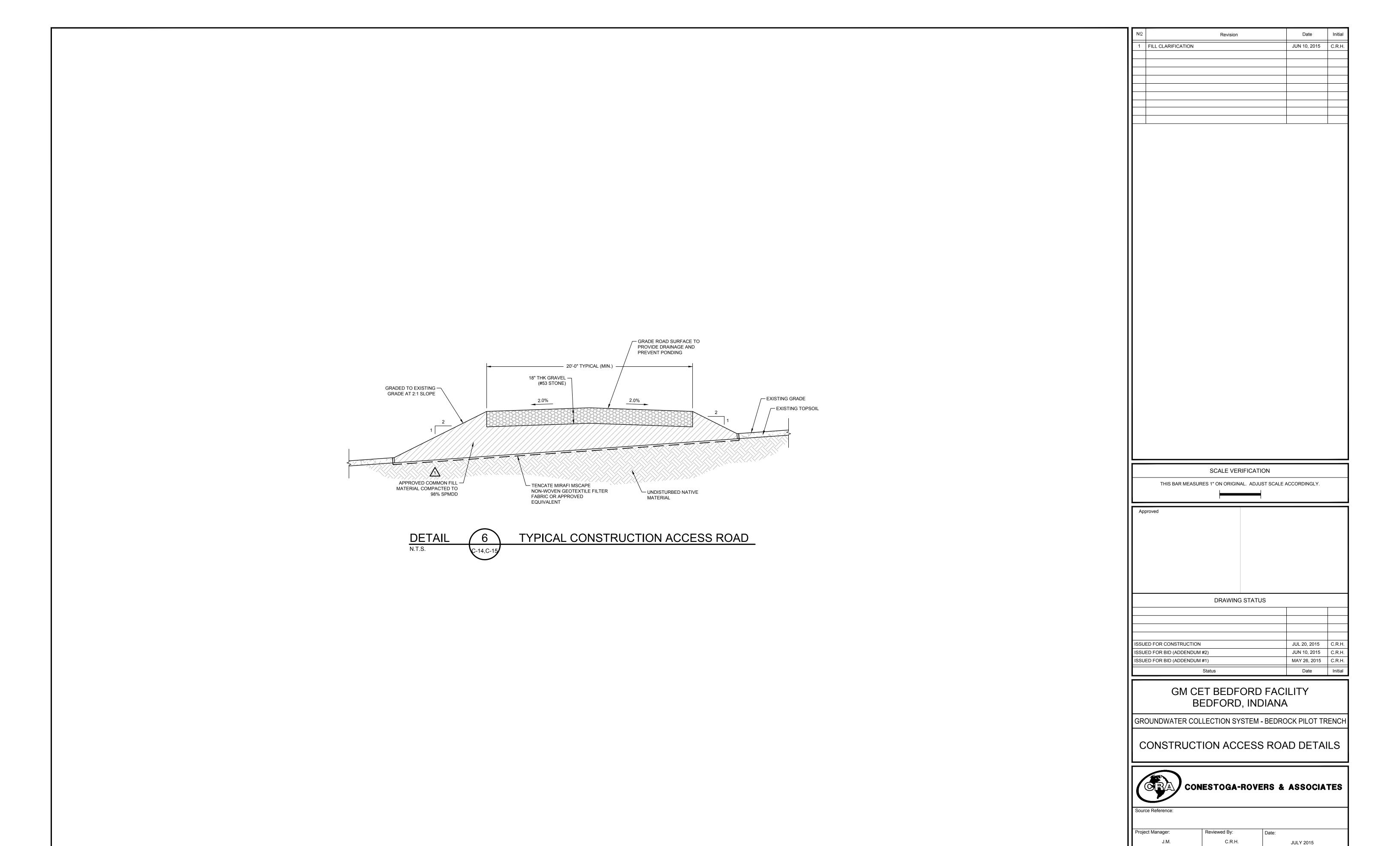

Project Manager: C.R.H. J.M. JULY 2015 Scale: Drawing Nº: Project Nº: AS SHOWN 13968-00 C-12


13968-00(365)CI-WA009 AUG 31/2015

Date

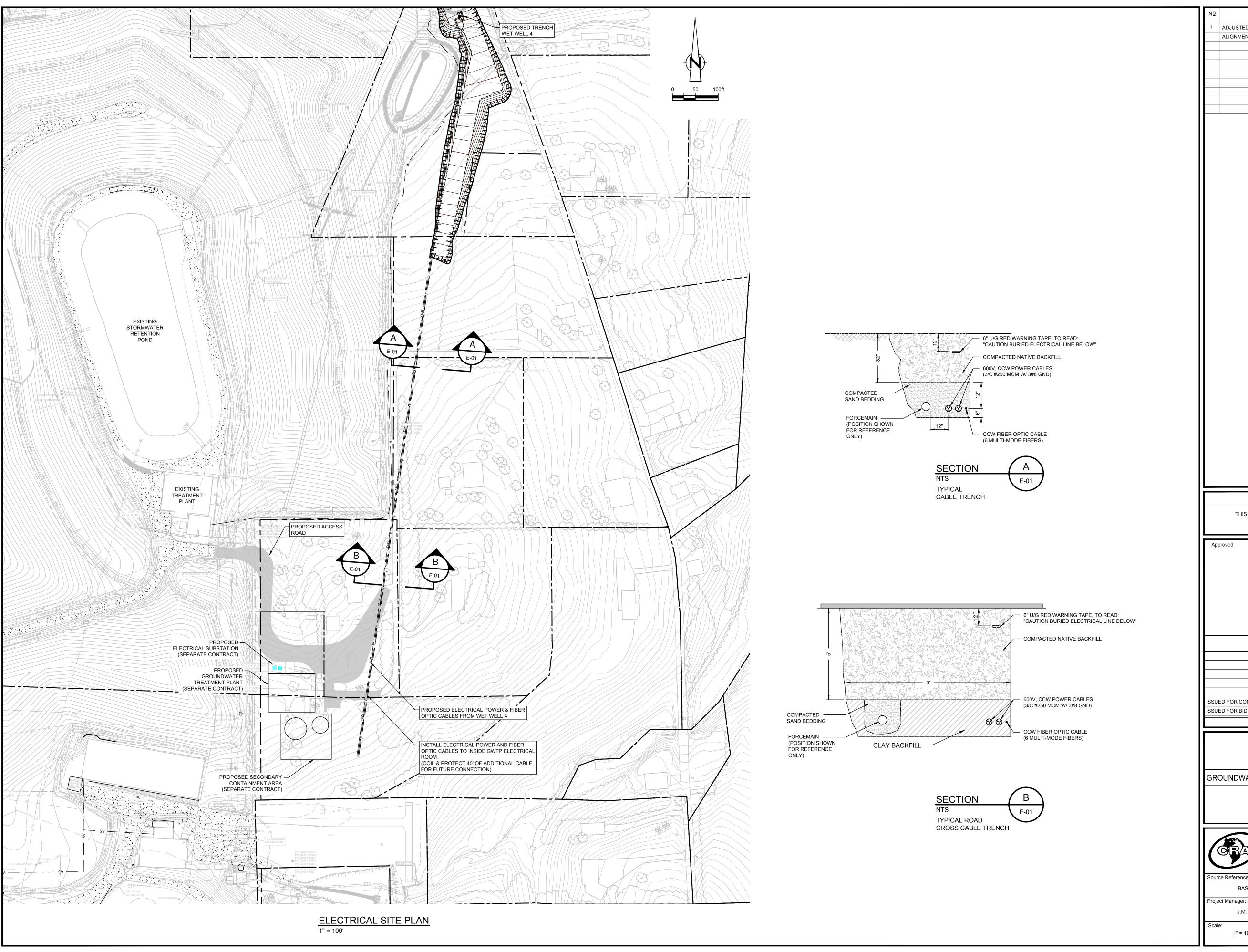

TWO RAIL GUARDRAIL





LEVEL SUPPORT RAFT - PLAN

13968-00(365)CI-WA016 AUG 31/2015


Drawing Nº:

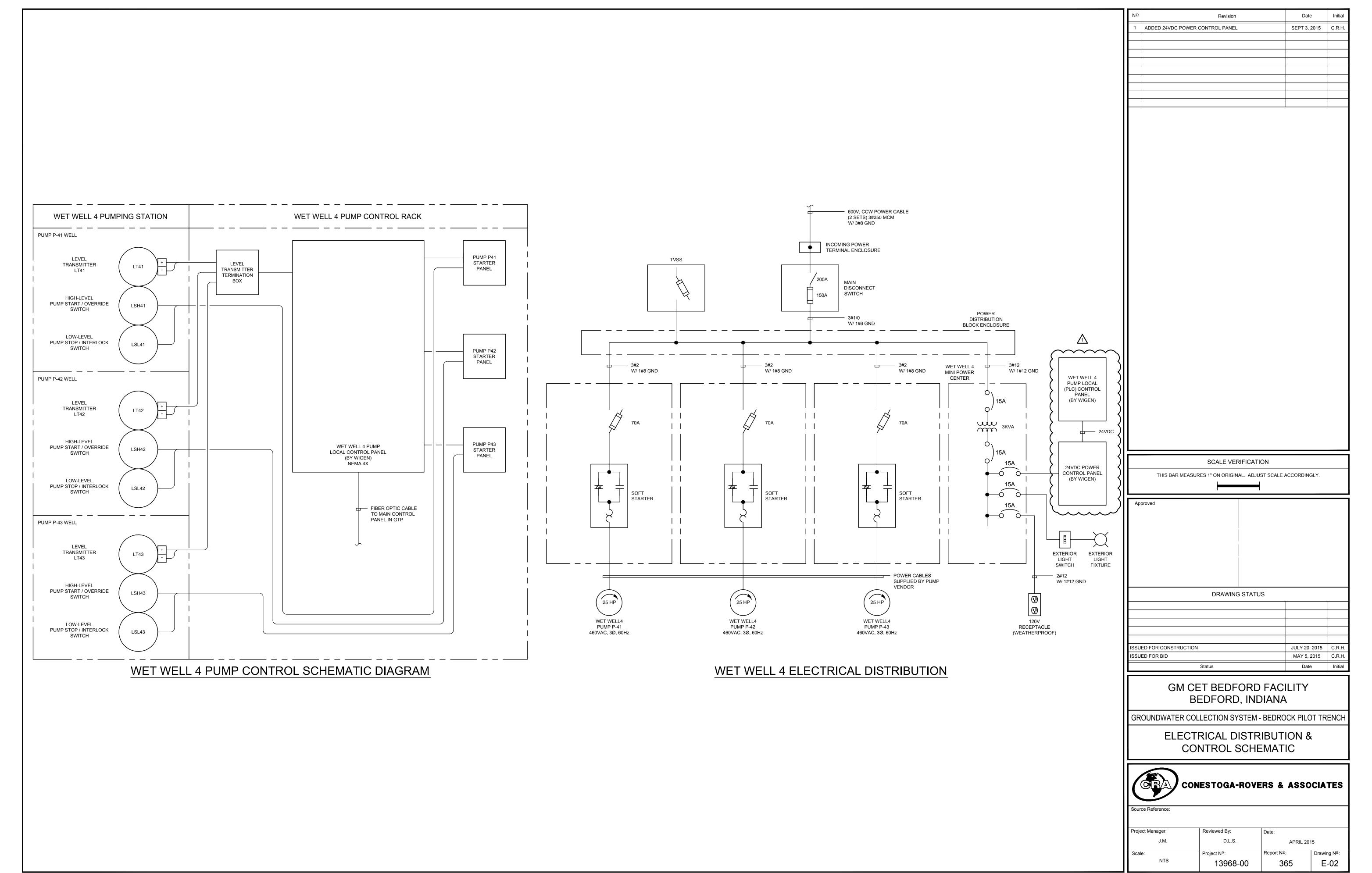
C-16

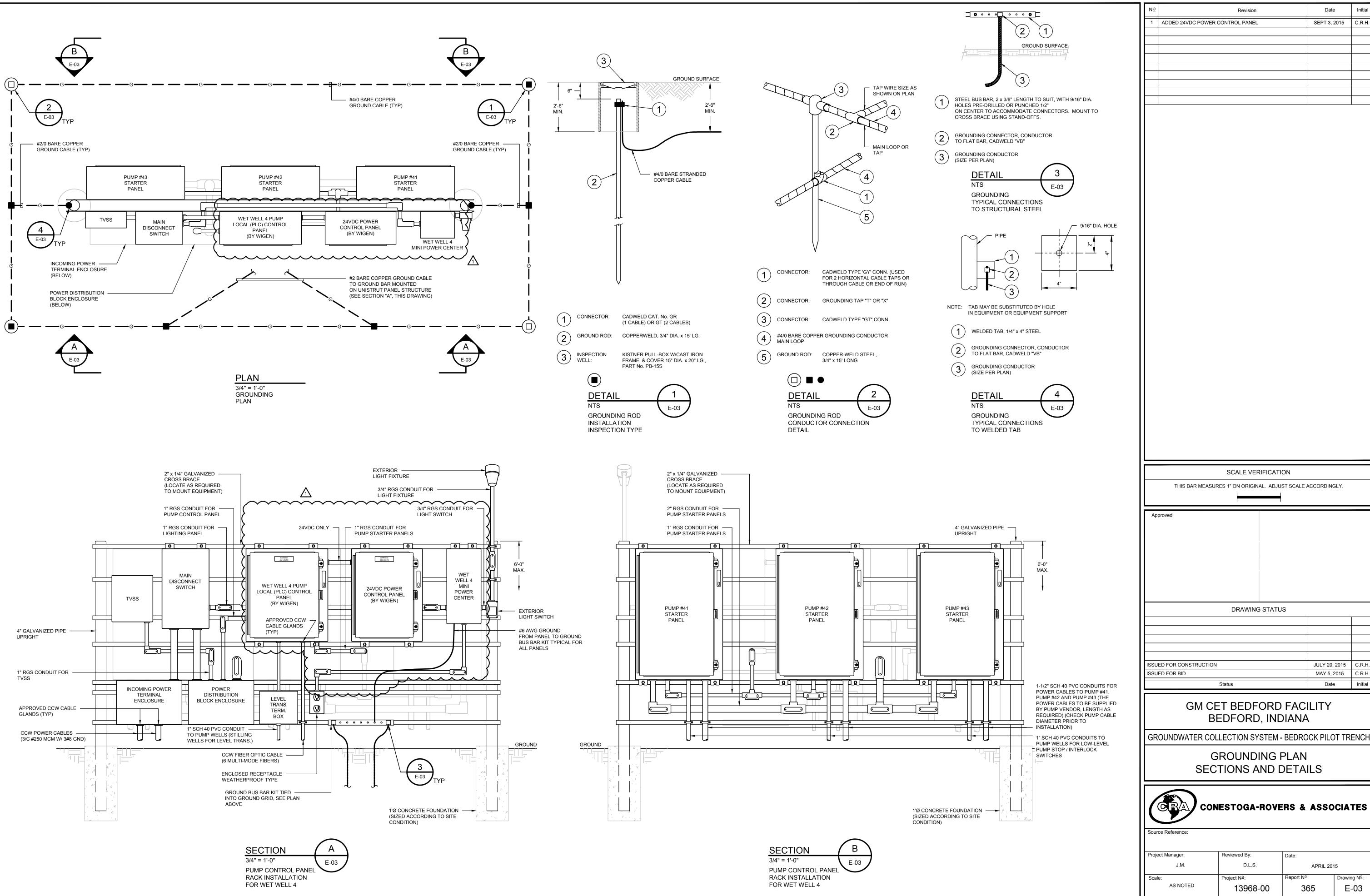
Scale:

N.T.S.

13968-00

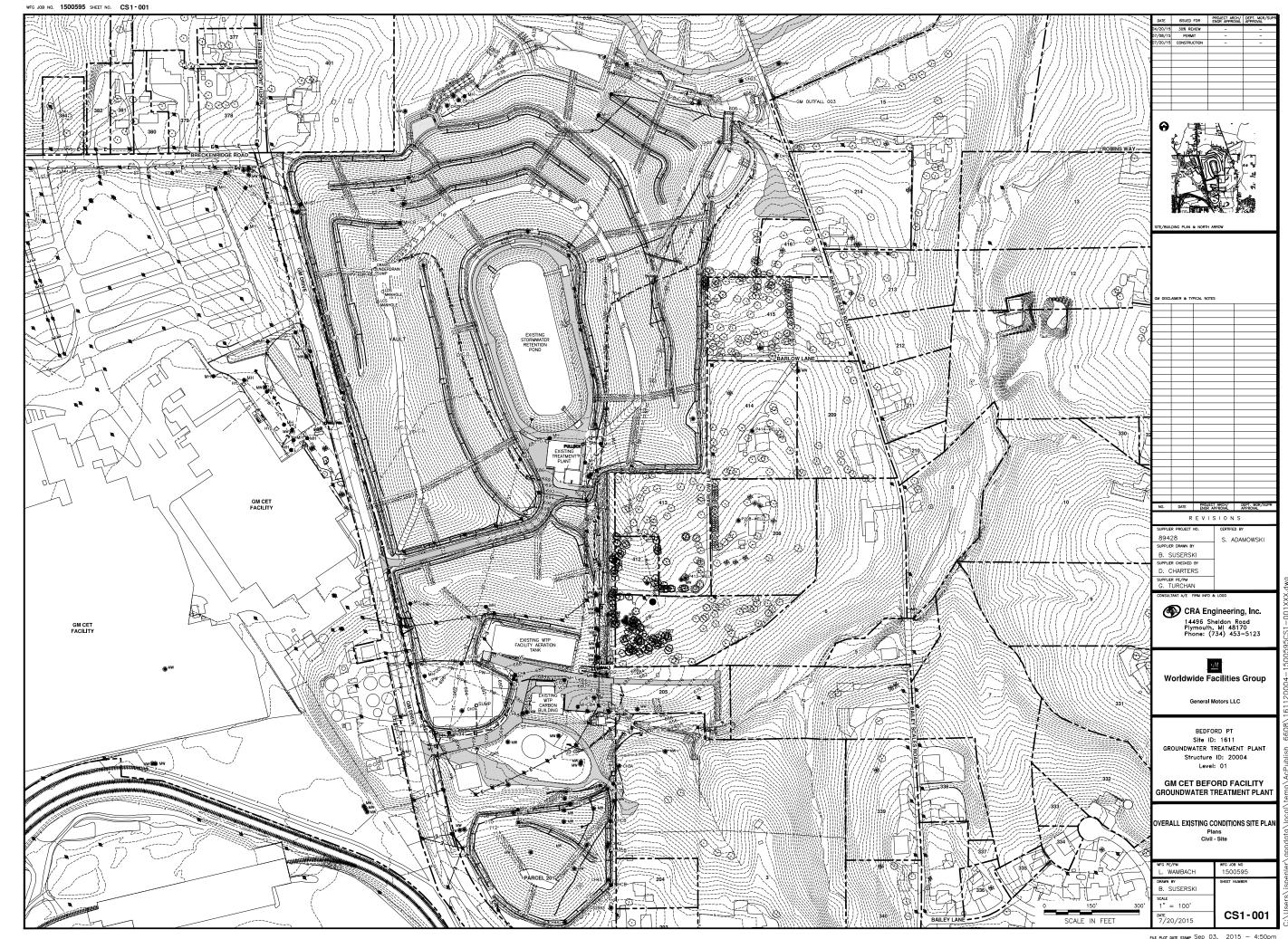
ADJUSTED TRENCH, POWER AND FIBRE OPTIC CABLE SEPT 3, 2015 C.R.H. ALIGNMENT SCALE VERIFICATION THIS BAR MEASURES 1" ON ORIGINAL. ADJUST SCALE ACCORDINGLY. DRAWING STATUS SSUED FOR CONSTRUCTION JULY 20, 2015 C.R.H. SSUED FOR BID MAY 5, 2015 C.R.H. Date Initial GM CET BEDFORD FACILITY BEDFORD, INDIANA GROUNDWATER COLLECTION SYSTEM - BEDROCK PILOT TRENCH ELECTRICAL SITE

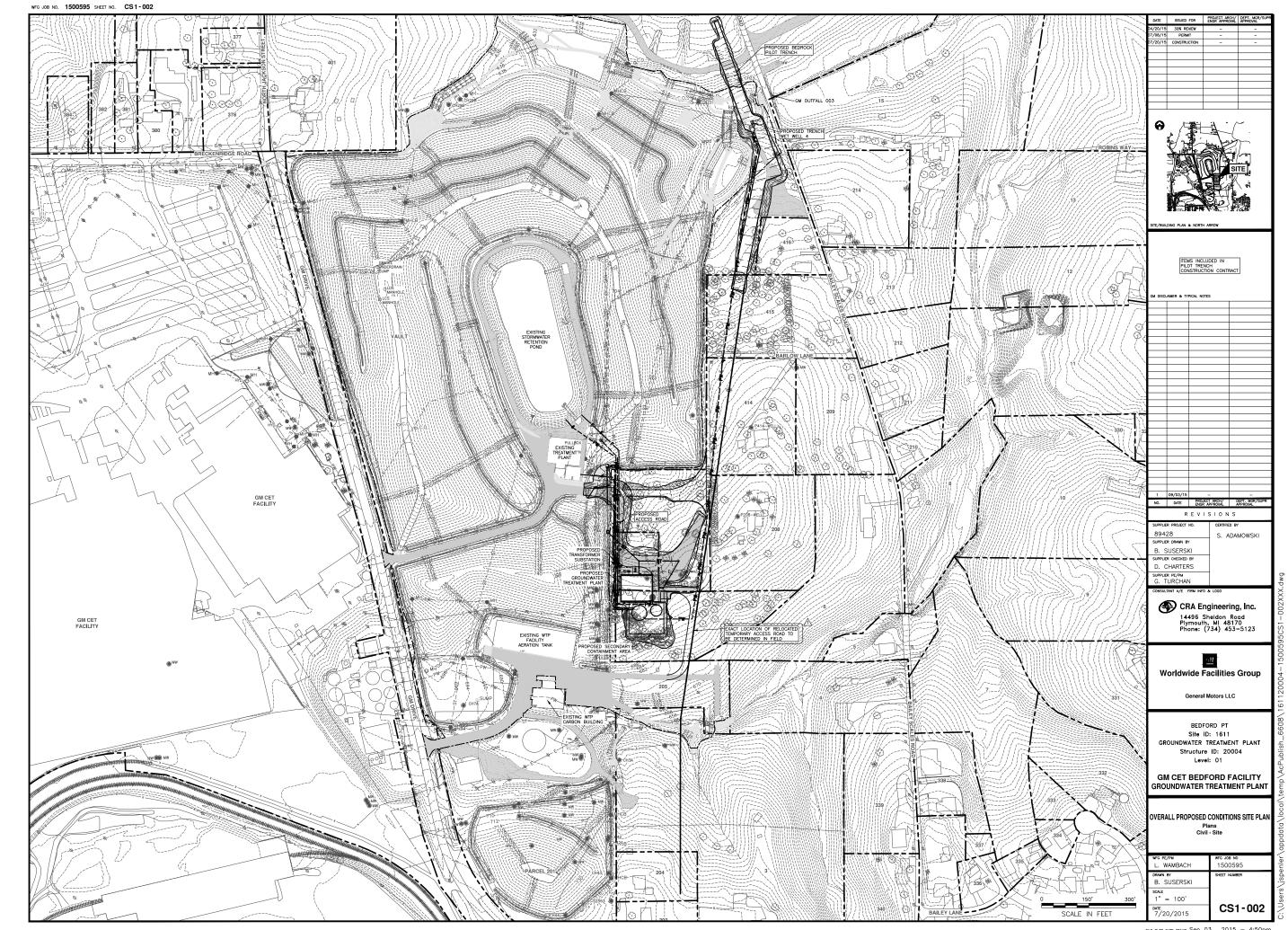

PLAN

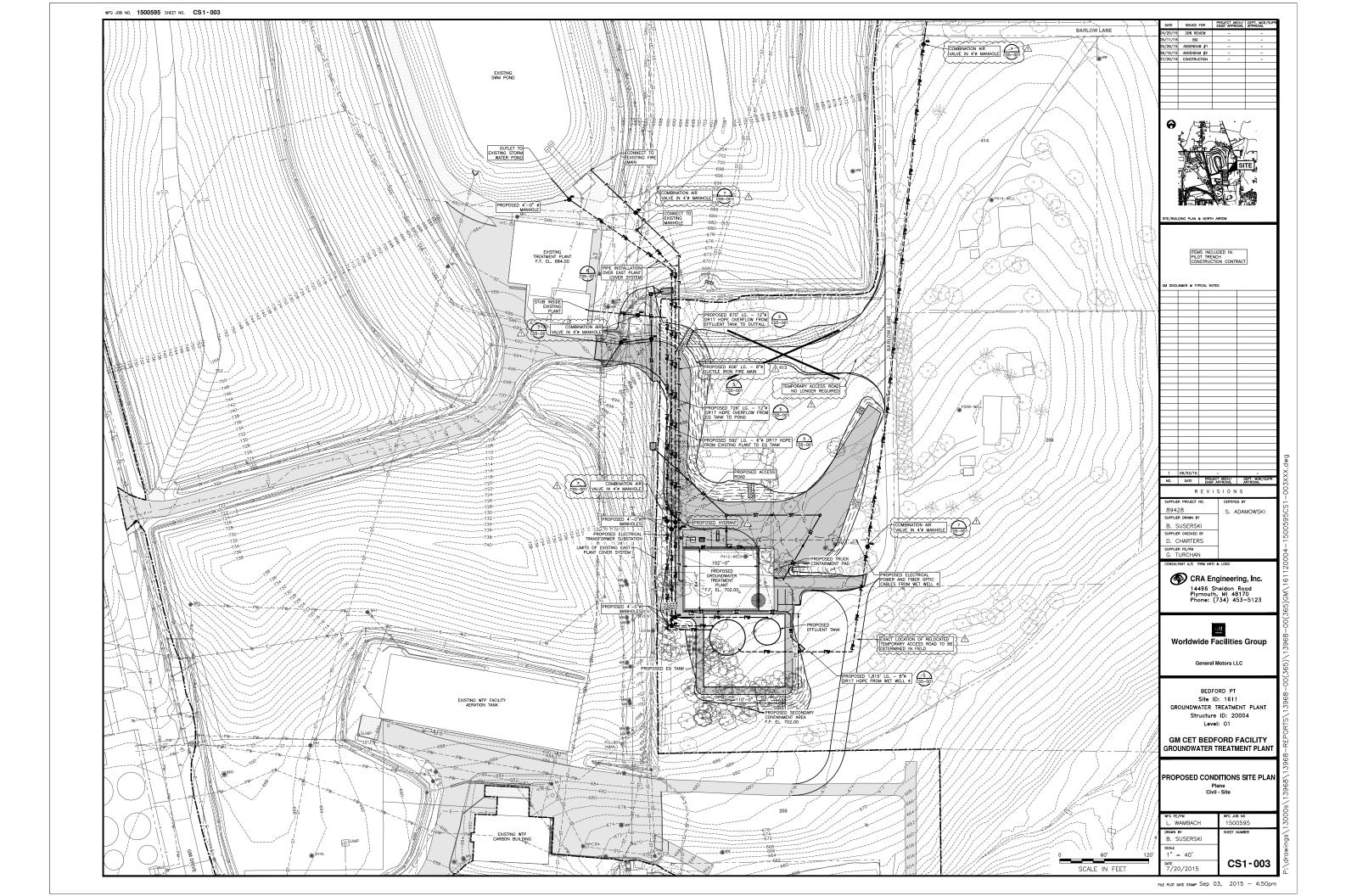

CONESTOGA-ROVERS & ASSOCIATES

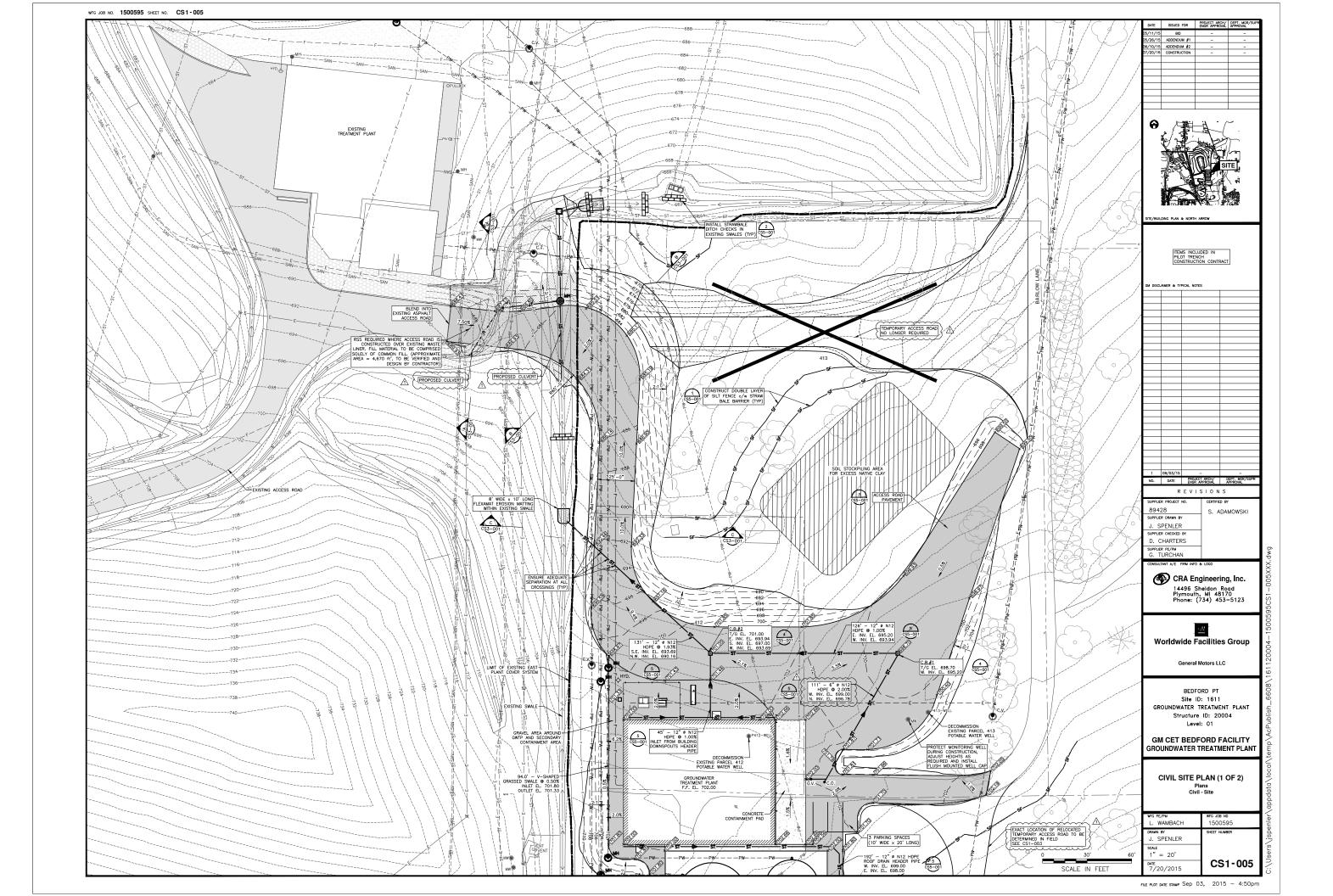
BASE MAP COMPLETED BY AIR-LAND SURVEYS, FLINT, MI. APRIL 2001

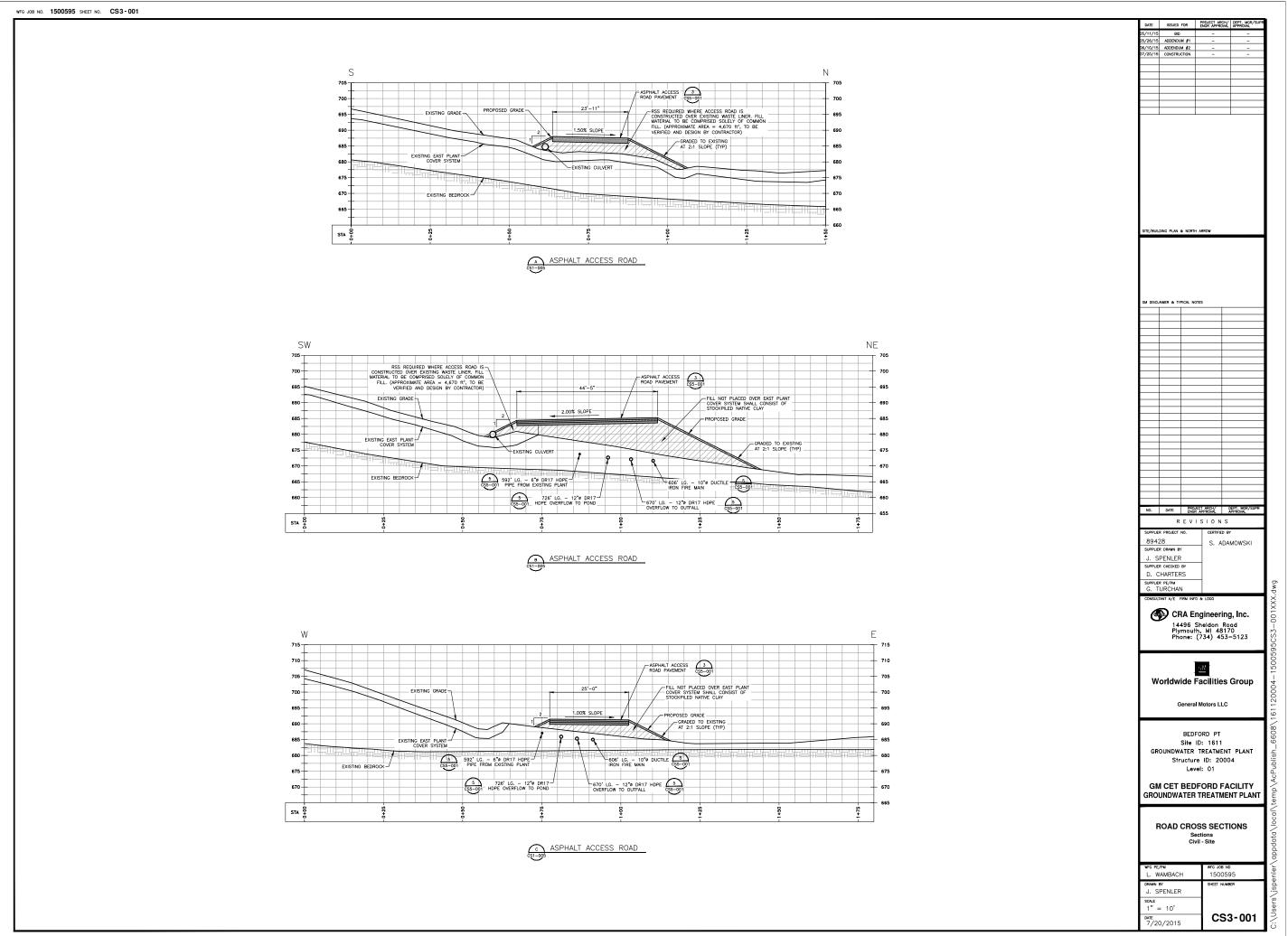
D.L.S. APRIL 2015 Scale: Drawing Nº: Project Nº: 1" = 100' 13968-00 E-01

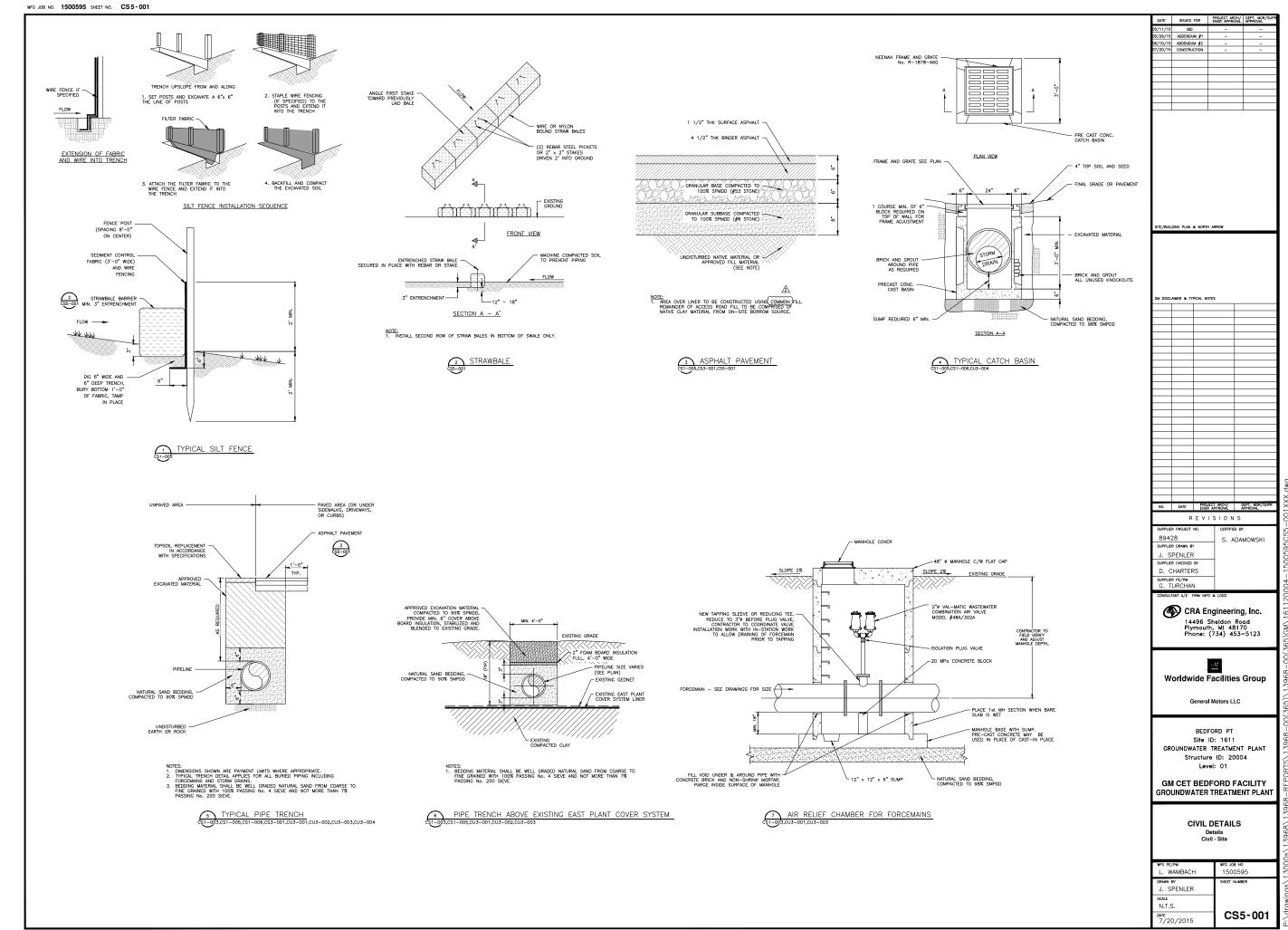


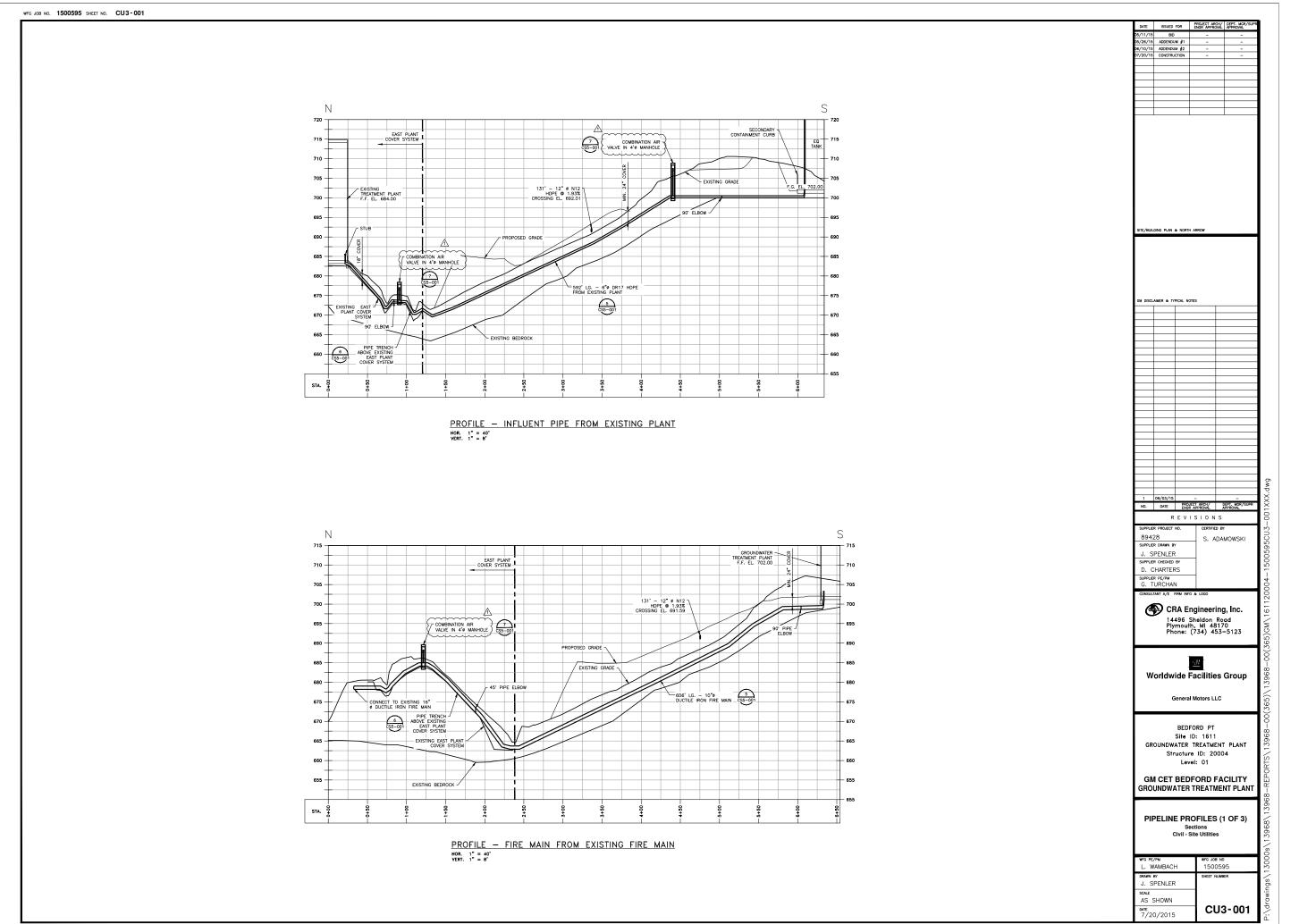

13968-00(365)EL-BU002 SEP 03/2015

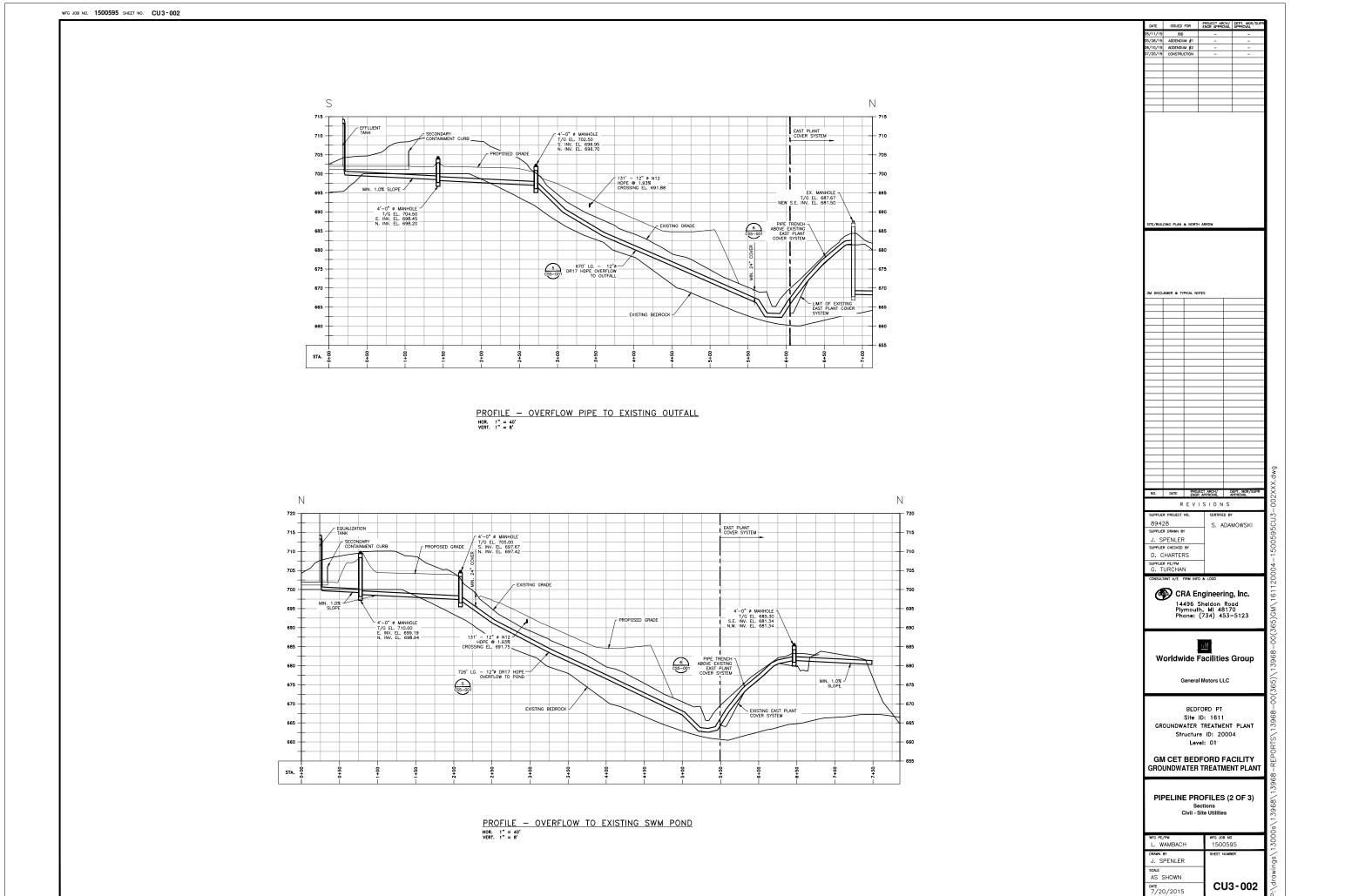


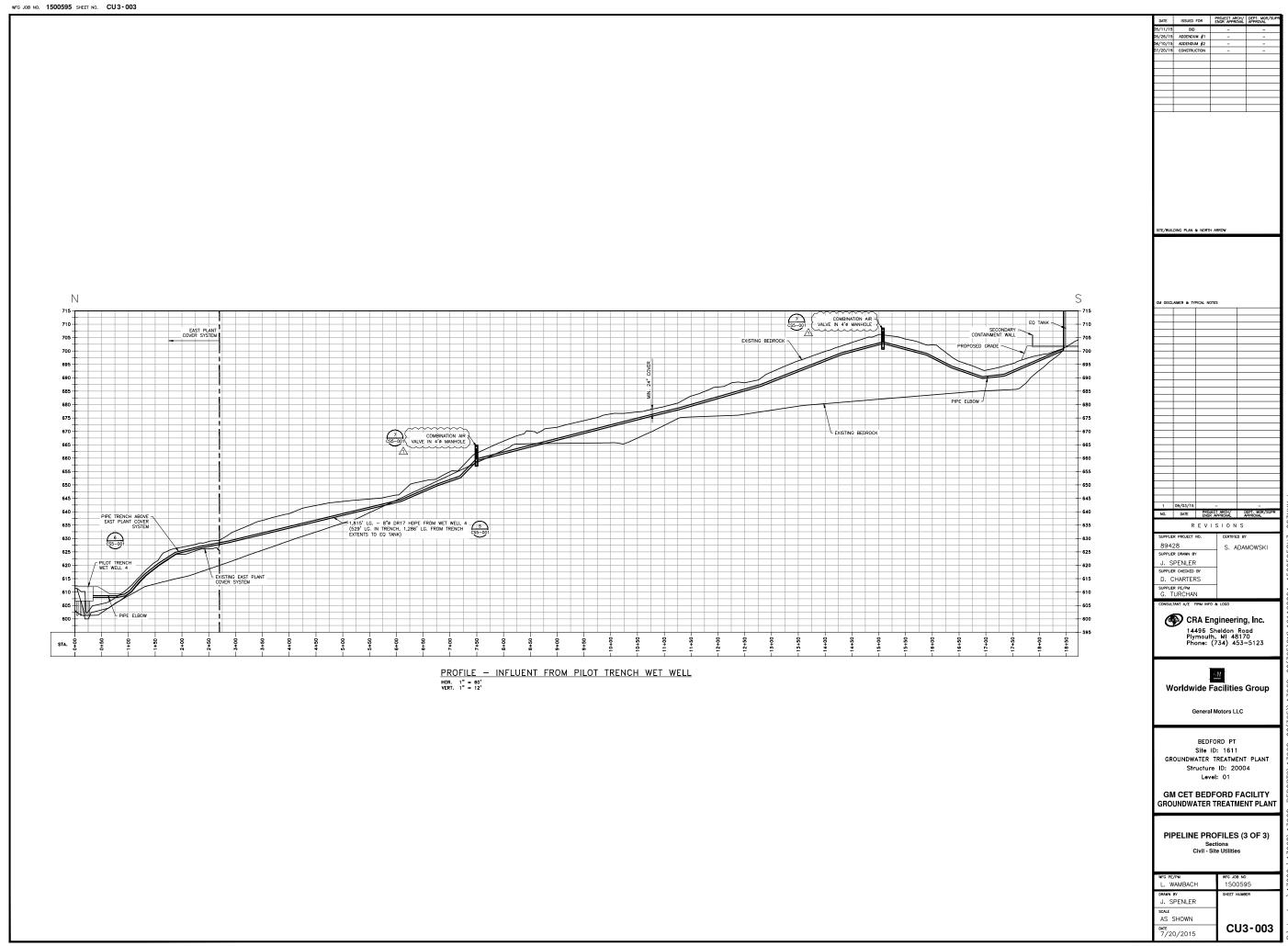

Drawing Nº:

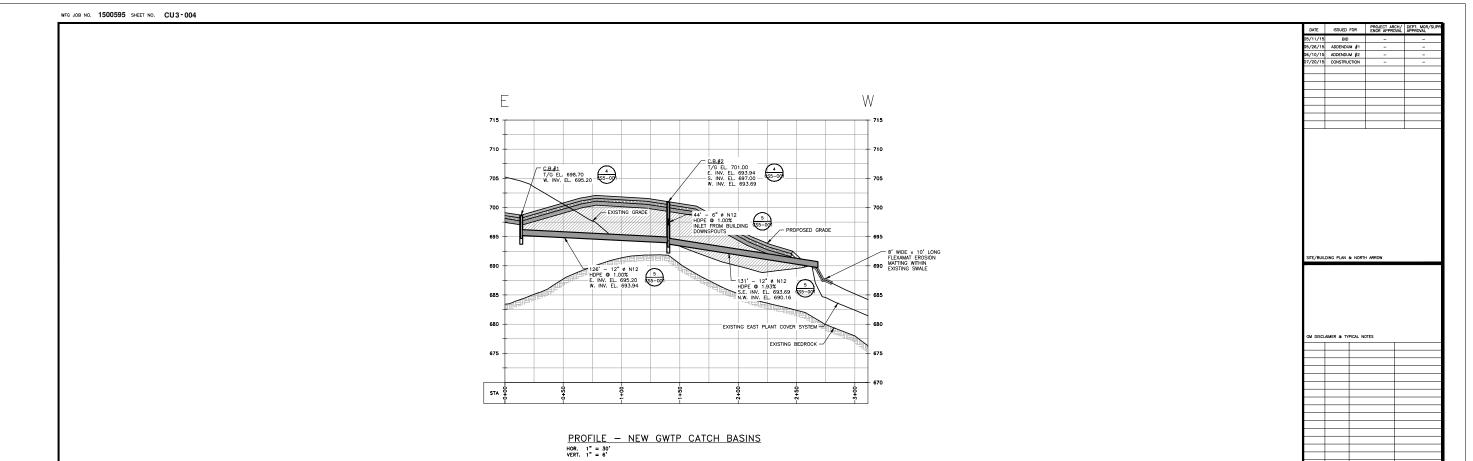

E-03

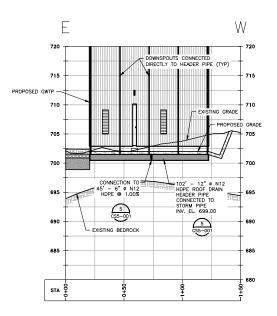


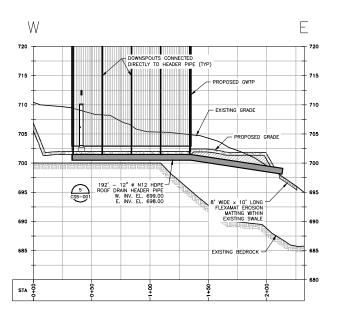












PROFILE - NORTH DOWNSPOUT HEADER PIPE
HOR. 1" = 30'
VERT. 1" = 6'

PROFILE - SOUTH DOWNSPOUT HEADER PIPE HOR. 1" = 30" VERT. 1" = 6"

SITE/BUIL	DING PLAN	& NORTH /	VPROW	
GM DISCL	AIMER & TY	PICAL NOTE	:s	
NO.	DATE	PROJEC	T ARCH/	DEPT, MGR/SUP APPROVAL
			SION	
SUPPLIE J. S SUPPLIE D. C SUPPLIE G. T	R DRAWN BY PENLER R CHECKED CHARTEF R PE/PM URCHAN	r R R RS	_	D BY DAMOWSKI
	CF 14- Ply Pho	RA En	gineer	ing, Inc. Road 1170 53-5123
w		ide Fa	Macilitie	es Group
GR	OUNDW	Site ID ATER 1 ucture	ORD PT D: 1611 REATME ID: 20	NT PLANT

Sections Civil - Site Utilities WFG JOB NO 1500595

CU3-004

GM CET BEDFORD FACILITY GROUNDWATER TREATMENT PLANT

CULVERT PROFILE

7/20/2015

FILE PLOT DATE STAMP Sep 03, 2015 - 4:51pm

WFG PE/PM L. WAMBACH

J. SPENLER SCALE AS SHOWN

Appendix F

Construction Quality Assurance Plan

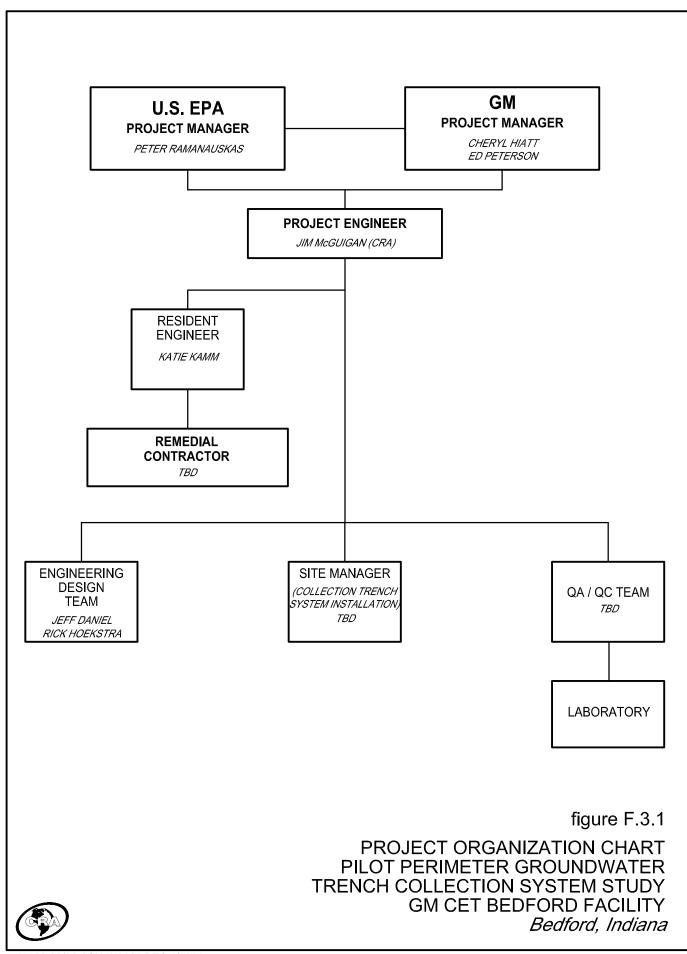
Work Task Component to be Inspected	Items to be Checked During Inspection	Type of Inspection	Frequency of Inspection	Submittals to Resident Engineer	Rejection Criteria
A. Construction Facilities and Temp	porary Controls				
Temporary controls	Are barriers in place to prevent unauthorized Site entry and to protect adjacent properties and facilities	• visual	• daily as required	• none	• barriers not correctly installed/located
	Is fencing in place to delineate work areas and do workers observe and respect limits marked with fencing	• visual	• daily as required	• none	 fencing not correctly installed/located
	 Are appropriate dust control measures being followed to prevent dust release from the Site exceeding specified levels 	• visual	• daily as required	• none	dust control measures not implemented
	 Are appropriate Site access roads and parking areas being maintained 	• visual	• daily as required	• none	 roads, parking areas not maintained
	 Are appropriate equipment decontamination procedures being followed 	• visual	• daily as required	• none	decontamination procedures not followed
Soil erosion and sediment control	As per Drawings and permits	• visual	daily as required	• none	• sediment and erosion controls inadequate
	 Are the silt fences and straw bale structures effective in sediment control 	• visual	• daily as required	• none	 visual irregularities evident, sediment escape evident
	 Are the silt fences and straw bale structures being maintained during construction activities 	• visual	daily as required	• none	evident excessive sediment material build-up
	Is surface water runoff prevented from leaving work areas	• visual	daily as required	• none	surface water controls not implemented
	 Is surface water runoff from non-contaminated areas prevented from contacting potentially contaminated areas 	• visual	• daily as required	• none	surface water controls not implemented
	Are appropriate erosion control measures in place around cuts, fills, stockpiles, staging areas, and other work areas	• visual	daily as required	• none	erosion control measures not implemented

Work Task Component to be Inspected	Items to be Checked During Inspection	Type of Inspection	Frequency of Inspection	Submittals to Resident Engineer	Rejection Criteria
B. Earthworks Activities					
 Clearing and Grubbing 	 are all above ground portions of trees, shrubs and other cleared vegetation handled separately from below ground portions 	• visual	• daily as required	• none	• N/A
	 Have all above ground portions of trees, shrubs and other cleared vegetation been chipped and stockpiled on Site 	• visual	daily as required	• none	• N/A
	 Have all below ground portions of trees, shrubs and other cleared vegetation been chipped and stockpiled separately from above ground portions 	• visual	• daily as required	• none	• N/A
• Excavation	Horizontal and vertical control	• survey	 prior to, during and after excavation 	• survey information	 defined extent of soil not reached
Stockpile Areas	Have soil stockpile areas been properly prepared	• visual	• prior to excavation	• none	 stockpile areas do not meet specifications
Backfilling	Is backfill material approved for backfill application	visualanalytical for imported soilsgeotechnical	 prior to backfilling for each source of backfill material for imported materials, prior to delivery to Site 	analytical resultsgradation curves	material is contaminated or otherwise unsuitable
	Does backfill material contain unsuitable material	visualcheck againstSpecifications	each source of backfill material	• none	unsuitable material present
	Has backfilled material been compacted to specification	visualin situ density	see Table C.6.2in accordance with Specifications	density results	95% Standard Proctor Density
	Horizontal and vertical control	• survey	during and on completion of backfilling	survey information	• N/A

Work Task Component to be Inspected	Items to be Checked During Inspection	Type of Inspection	Frequency of Inspection	Submittals to Resident Engineer	Rejection Criteria
C. Collection Trench System Constru	uction				
• Trench Seal	Do grout materials meet Specifications	 check suppliers specification 	• upon delivery to Site	• certification	mix design out of specification
• Sheet Pile	Do pile sections conform to Specifications	• visual	• upon delivery	manufacturer certificates	
	Grade inspection	• visual on levels	• prior to start	• none	
	Damage to sheet piles during installation	• visual	during installation	• installation records	 ruptures in the sheet pile material or separation of sheet piles at interlocks
	Quality and integrity of any sealant placed in the interlock	• visual	• each	• installation records	• separation of sheet piles at interlocks
Groundwater Collection Piping	Does pipe meet specifications	 check supplier's specifications 	• prior to delivery to Site	supplier and manufacturer's certification	• material does not meet specification
	Does installation follow proper alignment	• visual	• continuous	• none	alignment not in accordance with design
	Has pipe been laid to design depth	• survey	• continuous	• none	forcemain installed to incorrect depth
	Has pipe been damaged during installation	• visual	• continuous	• none	damaged pipe
	Has trench been properly backfilled	• visual	• continuous	• none	trench not properly backfilled
• Groundwater Collection Sumps	• Does excavation meet Specifications	 measure layout and depth 	• upon completion	• elevations	proper grade not maintained
	• Do appurtenances meet Specifications	 check supplier's specifications 	• prior to delivery to Site	manufacturer's certification	 material does not meet specifications
	Does frame leak	• visual leakage test	• upon installation	• none	leakage observed
	Are sumps installed to grade and plumb	• survey	• upon installation	• final elevations	final grade not achieved
	Do mechanical components meet Specifications	 check supplier's specifications 	• upon delivery to Site	 manufacturer's operating and maintenance literature 	• N/A

Work Task Component to be Inspected	Items to be Checked During Inspection	Type of Inspection	Frequency of Inspection	Submittals to Resident Engineer	Rejection Criteria
	 Are mechanical components being assembled according to Specifications 	• visual	continuously during assembly	shop drawings confirmation in writing that equipment was satisfactorily tested	• incorrect assembly
	• Do electrical components meet Specifications	 check supplier's specifications 	• upon delivery to Site	• certification	• N/A
	Are electrical components being assembled according to Specifications	• visual	continuously during assembly	test results upon successful completion of installation	• components not assembled to Specifications
	Do conduits meet Specifications	 check supplier's specifications 	• upon delivery to Site	manufacturer's certification	• N/A
Geotextile Installation	Do geotextile fabric comply with Specifications	 check manufacturer and supplier cerifications 	• refer to Specifications	 suppliers and manufacturer's cerification delivery tickets 	material does not meet Specifications
	Has material arrived at Site undamaged	• visual	• upon delivery to Site	• none	damaged materials
	Is material propertly stored to prevent accidental damage and UV exposure	• visual	• upon delivery to Site	• none	improperly stored materials
	Has Contractor submitted required submittals	 check against Specifications 	• prior to placement	Contractor's submittals	required submittals not submitted or deficient
	Is base preparation free of ruts or harmful objects	visual	prior to placement	• none	presence of ruts or sharp objects
	Is ambient temperature suitable for seaming	thermometer	• continuous	• none	• below 32 F or above 104 F
	Have materials been installed as specified	• visual	• continuous	supplier-installer approval letter	material not installed as specified
	Are there any visible defects, holes, blisters, undispersed raw materials or any sign of contamination by foreign matter	• visual	 after installation is completed and prior to placement of overlying materials 	• none	• visual defects
	Is installation free of wrinkles	• visual	prior to placement of overlying materia	• none	visual irregularities
	Is cover soil place in direction of overlap	• visual	• continuous	• none	failure to perform as stated

Work Task Component to be Inspected	Items to be Checked During Inspection	Type of Inspection	Frequency of Inspection	Submittals to Resident Engineer	Rejection Criteria
• Common fill	is imported material approved for application	visualgeotechnicalchemical analysis	• prior to delivery to Site	chemical results geotechnical data	does not meet Specifications
	does imported material contain unsuitable material	visualcheck against specification	each source of material	• none	unsuitable material observed
	hydraulic conductivity	geotechnical testing	• each source of material (seeTable C.6.2)	• geotechnical results	• hydraulic conductivity > 1 x10-5 cm/s
	has material been compacted to specification	visualcheck test results against specification	• see Table C.6.2	• geotechnical data	does not meet Specifications
	horizontal and vertical control	• survey	 during and upon material placement 	survey information	1-inch tolerance to design grades
Topsoiling and Seeding	• is imported material approved for application	visualanalyticalgeotechnical	 prior to placement for each source of topsoil and seeding material for imported materials, prior to delivery to Site 	analytical resultsgradation curves	material out of Specifications
	does material contain unsuitable material	visualcheck againstSpecifications	each source of topsoil and seeding material	• none	unsuitable material observed
	horizontal and vertical control	• survey	 during and on completion of topsoil placement 	survey information	• grading does not meet Specifications
D. Landfill Cover Restoration					
Final Cover Construction	Has landfill reached pregrade elevation	visualsurvey	on completion of backfilling	• none	
	See inspection requirements for soil layers and geosynthetics installation				
Geosynthetics Installation	Do geosynthetic materials comply with Specifications	 check manufacturer and supplier cerifications check against Specifications 	• refer to Specifications	 suppliers and manufacturer's cerification delivery tickets 	materials do not meet Specifications
	Have materials arrived at Site	• visual	• upon delivery to Site	• none	 damaged materials


Work Task Component to be Inspected	Items to be Checked During Inspection	Type of Inspection	Frequency of Inspection	Submittals to Resident Engineer	Rejection Criteria
	undamaged				
	Is material propertly stored to prevent accidental damage and UV exposure	• visual	• upon delivery to Site	• none	• improperly stored materials
	Has Contractor submitted required submittals	 check against Specifications 	• prior to placement	Contractor's submittals	• required submittals not submitted or deficient
	Is base preparation free of ruts or harmful objects	• visual	• prior to placement	• none	• presence of ruts or sharp objects
	Is ambient temperature suitable for seaming	• thermometer	• continuous	• none	• below 32 F or above 104 F
	Have seams been tested	• seam testing	• refer to Specifications	• results of seam testing	• seams do not meet criteria in Specs
	Have materials been installed as specified	• visual	• continuous	• supplier-installer approval letter	• material not installed as specified
	Are there any visible defects, holes, blisters, undispersed raw materials or any sign of contamination by foreign matter	• visual	 after installation is completed and prior to placement of overlying materials 	• none	• visual defects
	Is installation free of wrinkles	• visual	prior to placement of overlying material	• none	visual irregularities
	Is cover soil place in direction of overlap	• visual	• continuous	• none	• failure to perform as stated

	Work Task to be Inspected	Type of Testing	Method of Testing	Frequency	Acceptance/Rejection Criteria
A.	Trench Construction				
	Competency of Bedrock	 Bedrock competence Location/extent of groundwater migration pathways 	GPR Survey Electrical Resistivity Imaging	 Prior to excavation of trench, along the extent of the proposed perimeter trench 	• N/A
	Cement-Bentonite Grout				
	a) Material	Grout mixture	• ASTM C109	• 1 per batch	 100 psi minimum Unconfined Compressive Strength (UCS)
	b) Placement	In-place grout	• ASTM D5084	• 1 per 100 LF of trench	• 1 x 10 ⁻⁶ cm/s or less permeability
	Gravel Bedding and Cover				
	a) Material	Grain Size	• ASTM D422	• 1 per 1000 CY	 per Specification
		Chemical Characterization	USEPA SW-846	• 1 per source	 per Specification
	b) Placement	Grain Size	• ASTM D422	• 1 per 1000 CY	• per Specification
		 Compaction/density 	 ASTM D4253 	• 1 per lift	 70% relative density
			 ASTM D4254 		
	 Vinyl Sheet Piling 				
	a) Material	 Tensile strength at break 	 ASTM D638 	 Per manufacturer's QC testing frequency 	• 5,900-7,500 psi
		 Elongation at break 	 ASTM D638 	 As above 	• 40-80%
		 Tensile yield strength 	 ASTM D638 	 As above 	• 5,900-6,500 psi
		 Compressive strength 	 ASTM D695 	 As above 	• 8,000-13,000 psi
		 Flexural strength 	 ASTM D790 	As above	• 10,000-13,000 psi
		 Tensile modulus 	 ASTM D638 	 As above 	• 350-600 × 103 psi
		 Flexural modulus 	 ASTM D790 	 As above 	• 300-300 × 103 psi
		 Izod impact 	 ASTM D256A 	As above	 0.4-2.2 ft-lb/in. of notch
		 Hardness 	 ASTM D2240 (shore) 	 As above 	• 65-85
		 Coefficient of themal expansion 	 ASTM D696 	 As above 	• 50-100 × 10-6 in./in. ºC
		 Heat deflection temperature 	 ASTM D648 	 As above 	• 140-170 °F
		 Thermal conductivity 	 ASTM C177 	 As above 	 3.5-5.0 cal cm/s cm2 ^oC
		 Density 	 ASTM D792 	 As above 	 0.046-0.056 lb/in3
		 Water absorption 	 ASTM D570 	 As above 	• 0.04-0.40% (24 hr)
		Creep testing	• ASTM D5262	As above	• 4.000 psi total strain of less than 3 %
	Drainage Media (Sand)				
	a) Material	Grain Size	• ASTM D422	• 1 per 1000 CY	 per Specification
		Chemical Characterization	USEPA SW-846	• 1 per source	 per Specification
	b) Placement	Grain Size	• ASTM D422	• 1 per 1000 CY	• per Specification
		 Compaction/density 	• ASTM D4253	• 1 per lift	• 70% relative density

Work Task to be Inspected	Type of Testing	Method of Testing	Frequency	Acceptance/Rejection Criteria
·		•		
Geotextile				
a) Material	Unit Weight	• ASTM D5261	For manufacturer's testing frequency	• 8.8 oz/sq yd
	• Thickness	• ASTM D5199	• As above	• 31 mils
	Wide Width Tensile Strength	• ASTM D4595	As above	• 200 lbs/in MD and 275 lbs/in CD
	Grab Tensile Strength	• ASTM D4632	As above	• 375 lbs/in MD and 375 lbs/in CD
	Grab Tensile Elongation	• ASTM D4632	As above	• 15% in MD and 8% in CD
	Trapezoid Tear Strength CRR Puncture Strength	• ASTM D4533	As above As above	 120 lbs in MD and 120 lbs in CD 1200 lbs
	CBR Puncture Strength Apparent Opening Size (AOS)	ASTM D6241ASTM D4751	As above As above	
	Apparent Opening Size (AOS)Permittivity	• ASTM D4751 • ASTM D4491	As above As above 2	50 U.S. Sieve (maximum)0.20 sec-1
	Permittivity Permeability	• ASTM D4491	As above As above	• 0.20 sec-1 • 0.015 cm/sec
	Flow Rate	• ASTM D4491	• As above 2	• 15 gal/min/ft2 -7
	UV Resistance (at 500 hours)	• ASTM D4355	As above As above	• 70% (minimum)
	ov resistance (at 500 nours)	75111 54333	7.5 0.50 0.0	7070 (minimum)
 B. Cover System Restoration Grading Layer 				
a) Material	Particle Size Distribution	• ASTM D422	in accordance with specifications	• 1 per 10,000 CY
,	Maximum Dry Density	• ASTM D698	lab test to establish criteria	• 1 per 10,000 CY
	Optimum Moisture Content	• ASTM D698	lab test to establish criteria	• 1 per 10,000 CY
	·			·
b) Compaction	 Moisture Content in Laboratory 	 ASTM D2216 	 ±2% of moisture content in place 	• 1 per 5 acre/lift
	 Density in Place 	 ASTM D6938 	 90% of maximum dry density 	 2 per acre/lift
	 Moisture Content in Place 	 ASTM D3017 	 compactible to specified density 	• 2 per acre/lift
	 Placement Tolerance 	survey/measurement	 ±0.1 foot from design 	 before and after placement
Compacted Clay Layer Alexaging received or at	Moisture Content	• ASTM D2216	• 1 per 1,500 CY	 lab test to establish criteria
a) Materials received or at		• ASTM D2216 • ASTM D4318	• 1 per 1,500 CY • 1 per 1,500 CY	ML or CL per ASTM D-2487
borrow pit (imported)	Atterburg LimitsParticle-size distribution	• ASTM D4318 • ASTM D422	• 1 per 1,500 CY • 1 per 1,500 CY	 ML of CL per ASTM D-2487 minimum 25% <2 microns, min. 50%
	• Particle-Size distribution	• ASTIVI D422	• 1 per 1,300 Cr	passing No. 200 Sieve of which min. is 15% clay
	 Maximum Dry Density 	 ASTM D698 	• 1 per 1,500 CY	 lab test to establish criteria
	Hydraulic Conductivity	• ASTM D5084	• 1 per 10,000 CY	 1 x 10-7 cm/s at accepted compaction zone
	 Soil Classification 	 ASTM D2487 	• 1 per 1,500 CY	 CL or ML classification
	 Chemical Characterization 	USEPA SW-846	 each source area, as required 	 per Specification
b) Compaction	Density in Place	• ASTM D6938	• 5 /acre/lift	95% of Maximum Dry Density
	Moisture Content in Place	 ASTM D6938 	• 5 /acre/lift	• 0 - 5% above optimum
	Number of Passes	 Observation 	• continuous	 determined by compactor and desired %coverage
	Plasticity Index	 ASTM D4318 		• 10% to 30%
	Bulk Wet Density in Place	 ASTM D6938 		 per Specification
	 Depth of Layers 	 Observation 	• continuous	 equal continuous layers not
				exceeding 8 inches loose lift
	Final Elevation	• Survey	after placement	 tolerance of plus or minus 0.1 foot

Work Task	Torre of Torking	Advah and ad Tarabia a	5	Acceptance/Rejection
to be Inspected	Type of Testing	Method of Testing	Frequency	Criteria
				from design elevation
LLDPE Liner				
a) Material	 Carbon Black Content 	• ASTM D1603	 As per GRI Standard GM 17 (1/45,000 lbs) 	• 2 to 3%
	 Thickness 	 ASTM D5994 	As above (GM17- 1/roll)	 60 mils minimum average roll value (MARV)
	 Density 	• ASTM D1505/D792	 As above (GM17 - 1/200,000 lbs) 	 0.939 g/cu cm MARV
	 Tensile strength at break 	 ASTM D6693 	 As above (GM17 - 1/20,000 lbs) 	90 lbs/inch width MARV
		Type IV Dumbbell, 2ipm		
	 Elongation at break 	• ASTM D6693	 As above (GM17 - 1/20,000 lbs) 	• 100% MARV
		Type IV Dumbbell, 2ipm		
	 Puncturing resistance 	• ASTM D4833	 As above (GM17 - 1/45,000 lbs) 	66 lbs MARV
	Tear resistance	• ASTM D1004	 As above (GM17 - 1/45,000 lbs) 	• 33 lbs MARV
	Asperity height	• GM12	 As above (GM17 - every second roll) 	• 10 mils MARV
	 Carbon Black Dispersion 	• ASTM D5596	 As above (GM17 - 1/45,000 lbs) 	
	Cat 1 or 2			• 9
	Cat 3			• 1
	 Oxiation Induction Time (OIT) 		 As above (GM17 - 1/200,000 lbs) 	
	Standard	• ASTM D3895		• 100 minutes
	High pressure	• ASTM D5885		• 400 minutes
	 Oven Aging @ 85 degrees Celsius 	• ASTM D5721	 As above (GM17 - 1 per formulation) 	• N/A
	Standard OIT retained after 90 days	• ASTM D3895		• 35%
	High Press. OIT retained after 90 days	ASTM D5885		• 60%
	UV resistance		 As above (GM17 - 1 per formulation) 	
	High Press. OIT retained after 160 days	• ASTM D5885		• 35%
b) Test Seams	Seam shear test on test seam	Field tensiometer	Minimum 2 times per day for each seaming	• 2,000 & 1,500 psi minimum strength, and seam
.,		(ASTM D4437)	equipment	must not delaminate. Four of 5 replicate samples must pass.
	 seam peel test on test seam 	Field tensiometer	Minimum 2 times per day for each seaming	• 1500 & 1,250 psi minimum strength, and seam
	·	(ASTM D4437)	equipment	must not delaminate. Four of 5 replicate samples must pass.
	Non-destructive test	GRI GM6 and ASTM D4437	100% of production seams	Test results shall meet or exceed the requirements of GM6
	Destructive seam shear test	Field tensiometer	Minimum 1 test per approx. 500 linear feet of	2,000 & 1,500 psi minimum strength, and seam
		(GRI GM19 and ASTM D6392)	continuous seam or 300 linear feet of combined seams	must not delaminate. Four of 5 replicate samples must pass.
	Destructive seam peel test	Field tensiometer	 Minimum 1 test per approx. 500 linear feet of 	1500 & 1,250 psi minimum strength, and seam
		(GRI GM19 and ASTM D6392)	continuous seam or 300 linear feet of combined seams	must not delaminate. Four of 5 replicate samples must pass.
Drainage Geocomposite	Ply Adhesion	ASTM F904 Modified	Per manufacturer's standard QC testing frequency	0.5 lbs/inch
Dramage Geocomposite	Transmissivity	• ASTM D4716	• 1 test	• 5.0 x 10-4 m/s at 1,000 lbs and gradient of 0.2
	,			• 5.0 x 10-4 m/s at 1,000 lbs and gradient of 0.25
				• 5.0 x 10-4 m/s at 1,000 lbs and gradient of 0.33
				Sie X 10 Tinys de 15000 iss and gradient of 0155
a) Geotextile Fastened to the	Fabric Weight	• ASTM D5261	 Per manufacturer's standard QC testing frequency 	 minimum of 5.6 oz/sq yd
Top and Bottom of Geonet	 Grab Strength (MD/CD) 	 ASTM D4632 	As above	minimum of 140 lbs
	 Grab Elongation (MD/CD) 	• ASTM D4632	As above	• 50-140%
	 Permittivity 	• ASTM D4491	As above	• minimum 0.5 (sec-1)
	Apparent Opening Size (AOS)	• ASTM D4751	• As above	• maximum of 70 sieve size; minimum of 0.210 mm
b) Geocomposite	• Density	• ASTM D1505	Per manufacturer's standard QC testing frequency	• 0.94 g/cc

Work Task to be Inspected	Type of Testing Method of		Frequency	Acceptance/Rejection Criteria
	Carbon Black Content	• ASTM D1603	• As above	• 2.0 percent
	 Tensile Strength (MD) 	• ASTM D4595	• As above	• 450 lbs/ft
Common Fill				
a) Material	 Permeability 	 ASTM D5084 	• 1 per 1,000 CY	• 1 x 10 ⁻⁵ cm/s
	 Maximum Dry Density 	 ASTM D698 	• 1 per 1,000 CY	 lab test to establish criteria
	 Moisture Content 	 ASTM D2216 	• 1 per 500CY	 lab test to establish criteria
	 Particle-size distribution 	 ASTM D422 or D1140 	• 1 per 4,500 CY	
	 Grain Size 	 ASTM D422 	• 1 per 500CY	 lab test to establish criteria
	Chemical Characterization	USEPA SW-846	• 1 per source	 per Specification
b) Placement	Moisture Content in Place	• ASTM D6938	• 1 per 4,800 SY	• +/- 2% of optimum
	 Compaction Density in Place 	 ASTM D6938 	• 1 per 280 SY	 95% of maximum dry density
	 Elevation 	 Survey 	 before and after placement 	 tolerance of plus or minus 1 inch from design
	 Recompacted permeability 	 ASTM D5084 	• 1 per 10,000 CY	• 1 x 10-5 cm/s
	Elevation	Survey	before and after placement	tolerance of plus 1 inch from design
Topsoil				
a) Material	 Acidity Range (pH) 	 ASTM D4972 	• 1 per 1,000 CY	• 5.5 to 7.5
	Organic Matter	 ASTM D2974 	• 1 per 1,000 CY	• 2% to 10%
	Soil Classification	 ASTM D2487 	• 1 per 1,000 CY	 SP, SM, ML or OL
	 Chemical Characterization 	USEPA SW-846	• 1 per source	 per Specification
	Elevation	Survey	before and after placement	tolerance of plus 1 inch from design

Appendix G

Design Calculations

ENGINEERING DESIGN CALCULATION

Client:	GM Powertrain	×	13968	69	
Project: Pilot Trench Sump System		Location:	Bedford,Indiana		
E)					
CALCUL	ATION IDENTIFICATION				
Calculation	on Ref. No.:	No. Pages: 3 (Including calculation cover sheet)			
Calculation	on Description:				
	SUMF	PUMP SELECTI	ON		
,				25 - 2	
		*			
	weeks with the second s			8	
Design:	A.Wesolowski	a	Date: Sept 26/14		
Checked:	R.Hoekstra		Date: Sept 26/14		
	3	- (g	2 1 - 23 - 32 - 41 - 32 - 22 - 33 - 33 - 3		

RECORD OF REVISION

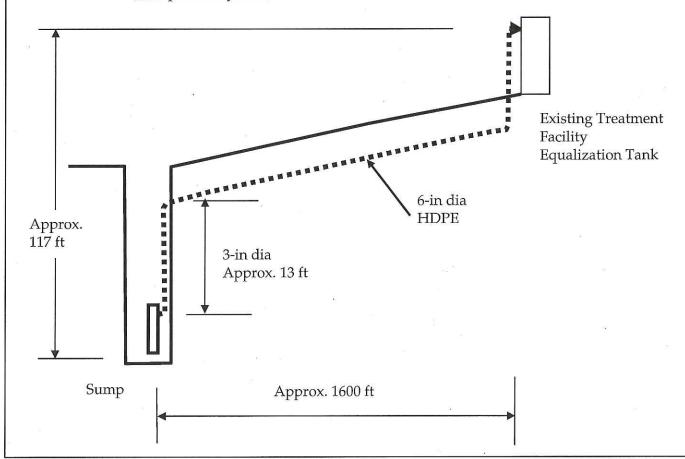
PROJECT IDENTIFICATION

Revision No.	Revision Date	Design	Checked	Supervised	Project Control	Detail of Revision
0						
U		n				Original (per above)
					**	
		1				
		•				
						97
	11		1	4		
						8
W.	. (4)					

PROJECT NO: 13968

DESIGNED BY: A.W.

PROJECT NAME: Pilot Trench Sump System CHECKED BY: R.H


DATE: Sept 26/14 PAGE 2 OF 3

1. SUMP PUMP SELECTION

1.1 Data Input

- water flow, $Q=2 \times 340 \text{ US GPM} = 680 \text{ US GPM} \times 0.85 \text{ flow reduction}$ factor = 578 US GPM , **use 600 US GPM**
- forcemain size HDPE DR 17 (100 psi), 6-in dia. and 3-in dia.
- difference in elevation $h_1 = 710$ ft top of tank 593 ft bottom of the sump = 117 ft

Pump head system

PROJECT NO: 13968

DESIGNED BY: A.W.

PROJECT NAME: Pilot Trench Sump System CHECKED BY:R.H.

DATE: Sept 26/14

PAGE 3 OF 3

1.2 Friction Losses

Total static head:

$$h_1 = 117ft$$

Total estimated equivalent 3-in pipe length:

$$L = 13 \text{ ft} + 10\% \text{ (fittings)} = 14.3 \text{ft}$$

Friction losses:

$$h_2 = 1.26 \text{ psi} = 2.9 \text{ ft}$$

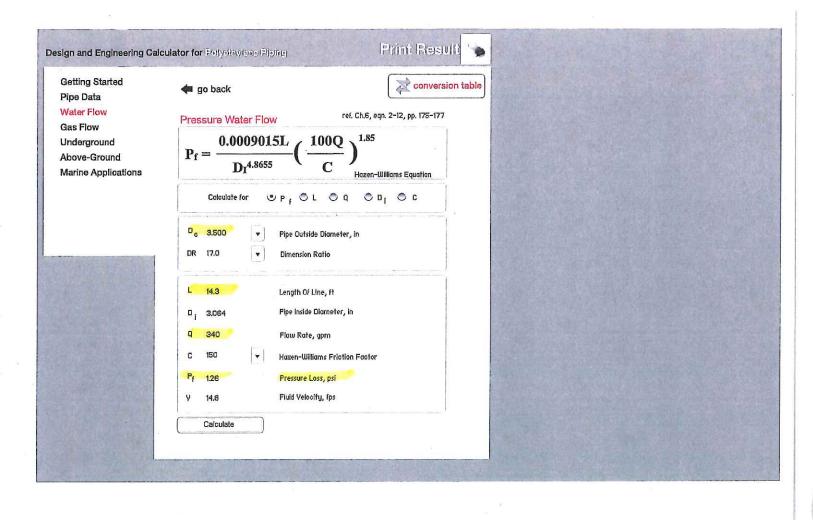
Total estimated equivalent 6-in pipe length:

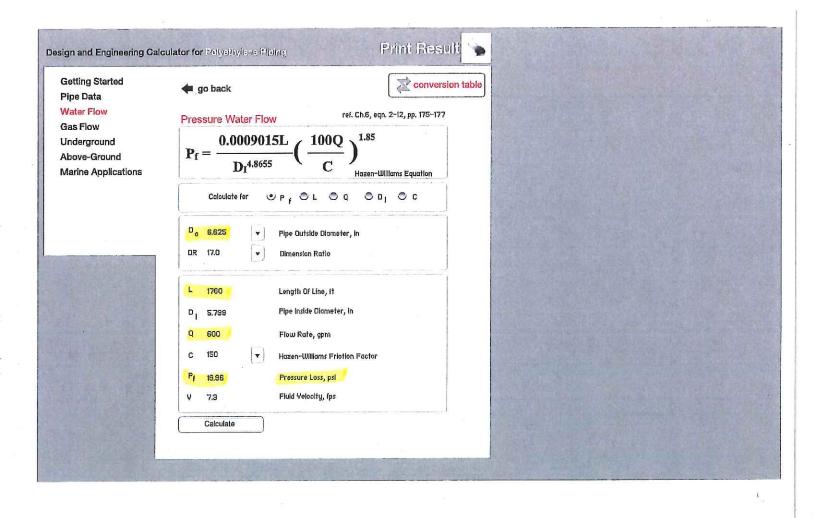
$$L = 1600 \text{ ft} + 10\% \text{ (fittings)} = 1760 \text{ ft}$$

Friction losses:

$$h_3 = 19.96 \text{ psi} = 46.1 \text{ ft}$$

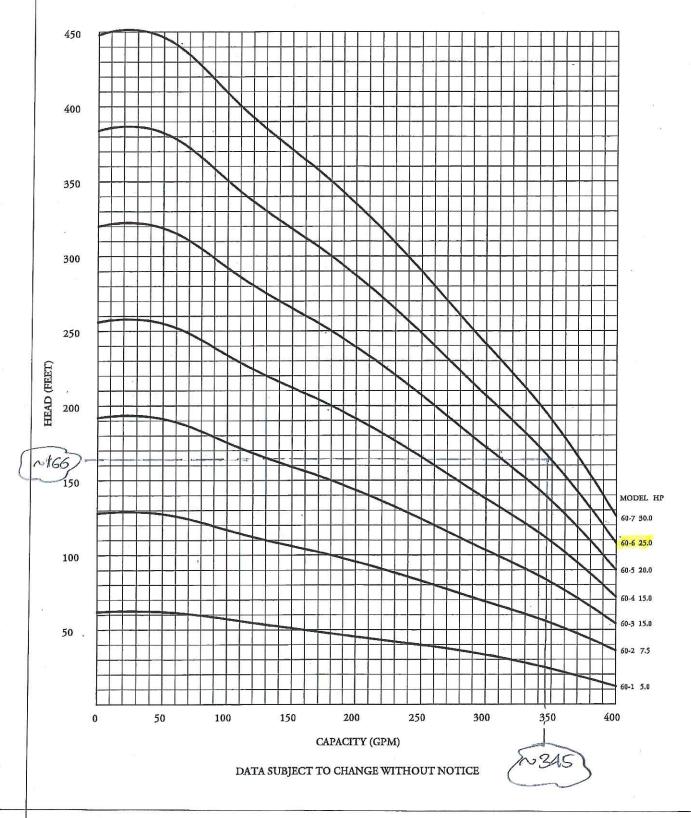
Based on Hazen Williams – Head Loss Calculator (see attached) for 6-in diameter forcemain at 600 GPM flow.

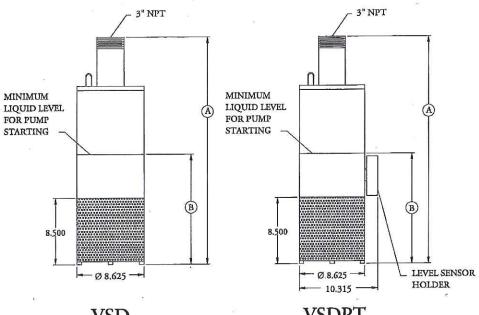

Total required dynamic head:


$$TDH = h_1 + h_2 + h_3 = 117ft + 2.9 + 46.1 = 166.0 ft$$

2. PUMP SELECTION

Electrical Submersible EPG Pump Model 60-6, 460 volts, three phase, 25 HP.


According to attached curve, single pump will be able to deliver approx. 345 GPM at the total head of 166 ft.



SERIES 60 SurePump™ Flow Range 50-400 GPM 60 Hz

SERIES 60 SIZE 8 VERTICAL SUMP DRAINER

VSD

VSDPT

	***	DITAGE		В	*APPROX. SHII	PPING WEIGHT
MODEL	HP	PHASE	A	В	VSD	VSDPT
60-1	5.00	1	62,26	50	221.31	226.31
60-1	5.00	3	56.26	44	198.66	203.66
60-2	7.50	1	64.80	48	282.06	287.06
60-2	7.50	3	61.00	44	259.21	264,21
60-3	15.00	3	69.34	48	295.35	300.35
60-4	15.00	3	73.88	48 .	304.64	309.64
60-5	20.00	3	78.42	50	317.25	322.25
60-6	25.00	3	88.06	53	355.74	360.74
60-7	30.00	3	95.20	55	382.35	387.35

=>

NOTE; ALL DIMENSIONS ARE IN INCHES.

*SHIPPING WEIGHT INCLUDES VSD: CRATE, 50' OF 12-4 MOTOR LEAD, 50' OF 3/16" SS CABLE. VSDPT: CRATE, 50' OF 12-4 MOTOR LEAD, 50' OF 3/16" SS CABLE, LEVEL SENSOR AND CABLE.

ENGINEERING DESIGN CALCULATION

PROJECT	<u> IDENTIFICATION</u>			
Client:	GM Powertrain	#	1396	58
Project:	Pilot Trench Sump System	Location:	Bedf	ford, Indiana
CALCUL	ATION IDENTIFICATION	5) U		
Calculation	on Ref. No.:	No. Pages: 2		
	5	(Including calcul	ation cov	ver sheet)
Calculation	on Description:			
	WET WELL 4 - BURIE	ED PIPING S	STRUC	CTURAL
	(for sump pipe 30)–in dia. HDP	E SDI	R 11)
	and the same of th	· · · · · · · · · · · · · · · · · · ·		0
Design:	A.Wesolowski		Date:	June 29/15
Checked:	R.Hoekstra		Date:	June 29/15
		-		-
	· -			The second of th

RECORD OF REVISION

Revision No.	Revision Date	Design	Checked	Supervised	Project Control	Detail of Revision
0						Original (per above)
	<u> </u>					,
	7.					
						9
	5	163				
				5		

PROJECT NO: 13968

DESIGNED BY: A.W.

PROJECT NAME: Pilot Trench Sump System

CHECKED BY: R.H.

DATE: June 29/15

PAGE 2 OF 2

BURIED PIPING STRUCTURAL

1. HDPE SDR 11 Sump Piping

Data Given

- depth of the sump 20 ft below grade
- soil density 120 lbs/cf
- water table above pipe 8 ft
- live load H-20
- soil modulus 2000 psi (conservative)
- pipe material 30-in dia., HDPE SDR 11 vertical sump

Ring Deflection

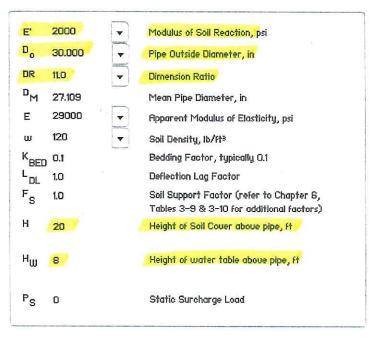
Based on Polyethylene Pipe Earthloading software, calculated ring deflection = 1.18 %, for 30-in dia. HDPE SDR 11 pipe, which is acceptable, (see attached results).

Getting Started

Pipe Data

Water Flow

Gas Flow


Underground

Above-Ground Marine Applications go back

conversion table

Earthloading

Spangler's Modified IOWA Formula for Ring Deflection. ref. Ch.S, p. 211, eqn. 3-10

Note: These calculations are limited to the design of PE pipes buried in trenches or embankments. The load and pipe reaction calculations presented may not apply to pipes installed using trenchless technologies. Reference Chapter 12 of the PPI Design Handbook for additional piping design information.

$$\frac{\Delta X}{D_{M}} = \frac{1}{144} \frac{K_{BED} L_{DL} P_{E} + K_{BED} P_{L}}{\frac{2E}{3} \left(\frac{1}{DR-1}\right)^{3} + 0.061 F_{s} E'}$$

Total Live Load, psi

Calculate

No Live Load PASHTO H2D Live Load Live Load Without Pavement

P_L 0

▼ To

Total Live Load, psf

2400 Earth and Surcharge Load on Pipe, psf PE P_T 2400 Total Prism Load, psf ΔX 0.32 Vertical Deflection, in Percent Vertical Deflection, % 4X/Dm#100 1.18 Critical Constrained Buckling Pwc 36451 If P_T >P_{IIIC}, critical buckling may occur. SF Safety Factor against Constrained Buckling 15.19

^{*} To calculate Critical Buckling Pressure, refer to eqns. 3–15, 3–17 & 3–18. Set Safety Factor, N, in 3–15 equal to 1 .

accounts for backfill settlement. This makes even more sense when the Soil Support Factor is included in the calculation.

Vertical Deflection Example

Estimate the vertical deflection of a 24" diameter DR 26 pipe produced from a PE4710 material that is installed under 18 feet of cover. The embedment material is a wellgraded sandy gravel, compacted to a minimum 90 percent of Standard Proctor density, and the native ground is a saturated, soft clayey soil. The anticipated trench width is 42".

SOLUTION: Use the prism load, Equation 3-1, Tables 3-7, 3-9, and 3-10, and Equation 3-10. Table 3-7 gives an E' for a compacted sandy gravel or GW-SW soil as 2000 lb/in². The Short-Term Apparent Modulus of Elasticity for PE 4710 material obtained from Table B.2.1 equals 130,000 psi. To estimate maximum deflection due to variability, this value will be reduced by 25%, or to 1500 lb/in². Table 3-9 gives an E'_{N} of 700 psi for soft clay. Since B_d/D equals 1.75 and E'_N/E' equals 0.47, F_s is obtained by interpolation and equal 0.60.

The prism load on the pipe is equal to:

$$P_E = (120)(18) = 2160 lb / ft^2$$

Substituting these values into Equation 3-10 gives:

$$\frac{\Delta X}{D_M} = \frac{2160}{144} \left[\frac{(0.1)(1.0)}{\frac{2(130,000)}{3} (\frac{1}{26-1})^3 + (0.061)(0.60)(1500)} \right]$$

$$\frac{\Delta X}{D_M} = 0.025 = 2.5 \%$$

Deflection Limits

The designer limits ring deflection in order to control geometric stability of the pipe, wall bending strain, pipeline hydraulic capacity and compatibility with cleaning equipment, and, for bell-and-spigot jointed pipe, its sealing capability. Only the limits for geometric stability and bending strain will be discussed here. Hydraulic capacity is not impaired at deflections less than 7.5%.

Geometric stability is lost when the pipe crown flattens and loses its ability to support earth load. Crown flattening occurs with excessive deflection as the increase in horizontal diameter reduces crown curvature. At 25% to 30% deflection, the

crown may completely reverse its curvature inward and collapse. See Figure 3-1A. A deflection limit of 7.5% provides at least a 3 to 1 safety factor against reverse curvature.

Bending strain occurs in the pipe wall as a result of ring deflection—outer-fiber tensile strain at the pipe springline and outer-fiber compressive strain at the crown and invert. While strain limits of 5% have been proposed, Jansen (12) reported that, on tests of PE pipe manufactured from pressure-rated resins and subjected to soil pressure only, "no upper limit from a practical design point of view seems to exist for the bending strain." In other words, as deflection increases, the pipe's performance limit will not be overstraining but reverse curvature collapse.

Thus, for non-pressure applications, a 7.5 percent deflection limit provides a large safety factor against instability and strain and is considered a safe design deflection. Some engineers will design profile wall pipe and other non-pressure pipe applications to a 5% deflection limit, but allow spot deflections up to 7.5% during field inspection.

The deflection limits for pressurized pipe are generally lower than for nonpressurized pipe. This is primarily due to strain considerations. Hoop strain from pressurization adds to the outer-fiber tensile strain. But the internal pressure acts to reround the pipe and, therefore, Eq. 3-10 overpredicts the actual long-term deflection for pressurized pipe. Safe allowable deflections for pressurized pipe are given in Table 3-11. Spangler and Handy (13) give equations for correcting deflection to account for rerounding.

TABLE 3-11 Safe Deflection Limits for Pressurized Pipe

DR or SDR	Safe Deflection as % of Diameter
32.5	7.5
26	7.5
21	7.5
17	6.0
13.5	6.0
11	5.0
9	4.0
7.3	3.0

^{*}Based on Long-Term Design Deflection of Buried Pressurized Pipe given in ASTM F1962.

Appendix H

Sampling and Analysis Plan (SAP)

Sampling and Analysis Plan (SAP)

Pilot Perimeter Groundwater Trench Collection System Study

Bedford, Indiana

651 Colby Drive Waterloo Ontario N2V 1C2 Canada 013968 | Report No 393 | February 19, 2016

Table of Contents

1.	Introd	uction	. 1
2.	Gene	ral Sampling Protocols	. 1
	2.1	Sampling	. 1
	2.2	Equipment Cleaning	. 2
	2.3	Waste Handling	. 2
3.	Stock	pile Soil Sampling	. 2
4.	Field	Log	. 3
5.	Samp	le Shipment and Containers	. 3
	5.1	Chain-of-Custody Forms	. 3
	5.2	Sample Containers and Handling	. 4

Table Index

Table C2.1 Summary of Sampling and Analysis Program

List of Acronyms

Bedford Facility General Motors Corporation Powertrain Bedford Facility

GHD GHD Limited

Creek Areas designated creek and adjacent floodplain areas of Pleasant Run and its

tributaries

DOT Department of Transportation

GM General Motors Corporation

QAPP Quality Assurance Project Plan

SAP Sampling and Analysis Plan

U.S.EPA United States Environmental Protection Agency

Work Plan Interim Measures Work Plan

1. Introduction

This Sampling and Analysis Plan (SAP) is submitted as an appendix to and forms part of the Pilot Perimeter Groundwater Collection System Study (Pilot Trench) submitted by General Motors LLC (GM) to the United States Environmental Protection Agency (U.S. EPA) for the completion of the East Plant Area Perimeter Groundwater Trench Collection System Interim Measure. This SAP covers construction activities to be conducted at the Pilot Trench where polychlorinated biphenyls (PCBs) may be present in the soils and rock.

The SAP describes procedures for the collection of stockpile samples that will be collected during the implementation of the Pilot Trench. The purpose of this sampling will be to classify materials (i.e. soil, rock waste) for disposal or re-use purposes. A detailed scope of work for the activities associated with this SAP can be found in Section 3.0 of the Pilot Trench Study Report.

2. General Sampling Protocols

2.1 Sampling

The following protocols will be employed during sampling conducted during implementation of the Work Plan:

- 1. Sampling instruments and equipment will be cleaned in accordance with the protocols presented herein prior to collecting samples for chemical analyses at each location.
- A new pair of disposable latex gloves will be used at each location to be sampled for chemical analyses. Additional glove changes will be made for conditions such as: if the gloves are observed to be torn, or the gloves are suspected of being soiled from a source other than the sample media itself.
- 3. Quality assurance/quality control samples will be collected as outlined in the approved project Quality Assurance Project Plan (QAPP) for the Site, and summarized in Table C.2.1.
- 4. Sampling generated wastes such as gloves, tyveks, etc. will be collected and containerized for proper disposal.
- 5. Samples will be identified using labels and a tag affixed to the neck of the container. Samples will also be labeled and tags noting the site, sample location, sample interval (if appropriate), analysis required, preservative added, date, time and sampler's initials. Sample preservation protocols will be followed in adherence with the QAPP. A hard cover bound field book will be maintained to record all samples and sampling events.
- 6. Containers for sample collection and preservation requirements will be determined as required by the analytical parameters. Sample bottles will be provided by the laboratory and will be prepared using a standard laboratory validated washing procedure. The sample bottles will be delivered to the site in sealed containers.
- 7. Collected sample shipments for chemical analysis will be immediately iced in laboratory supplied coolers after collection and labeling. Any remaining space will be filled with packing to cushion the containers within the shipment coolers. Each cooler will be sealed with a

transportation custody seal containing the sampler's initials. The cooler will then be sealed with packing tape.

- 8. Samples will be delivered to the laboratory by commercial courier or GHD Limited (GHD) personnel, the day following sample collection.
- 9. Samples will be shipped under chain-of-custody procedures as outlined in the QAPP.

2.2 Equipment Cleaning

Prior to the collection of any samples designated for chemical analyses, sampling equipment and tools, except for dedicated equipment and pre-cleaned disposable tools, will be cleaned using the following cleaning protocols as follows:

- Wash with low phosphate detergent using a brush to remove particulate matter or surface film,
 if any
- ii. Potable water rinse
- iii. Rinse with pesticide-grade isopropanol
- iv. Rinse with deionized water
- v. Air dry
- vi. Wrap in aluminum foil or polyethylene until required and during transport to the sampling site.

Fluids used for cleaning will not be recycled. Wash water and rinse water will be transferred to drums and/or a wastewater tank on Site pending final disposal. Isopropanol rinsings will be kept separate from wash/rinse waters and will be transferred to drums pending final disposal.

Following final rinse, sampling equipment will be visually inspected to verify that they are free of soil particulates and other solid material which may contribute to possible sample cross-contamination. Dedicated equipment which is used only once will not be subject to the above decontamination procedures.

2.3 Waste Handling

Wash and rinse waters generated during excavation activities will be containerized in storage tanks or Department of Transportation (DOT) approved 55-gallon drums or equivalent, labeled, and sealed prior to characterization for disposal consistent with the Waste Management Plan.

3. Stockpile Soil Sampling

Sampling of stockpiled soils designated for disposal at commercial facilities, will be performed at the frequency specified by the disposal facility to characterize the soil for disposal purposes. The soil will have been already disturbed during excavation and mixed to a degree, therefore, the procedures used to obtain representative samples from in situ soils are not applicable in this situation. A sufficient number of representative samples will be collected for disposal purposes, based on the quantity required by the disposal facility:

1. Prior to use at each stockpile to be sampled, the sampling equipment will be cleaned according to the protocol presented in Section 2.2;

- 2. A new pair of disposable gloves will be used at each sample location;
- Stockpiled soil samples will be collected using a stainless steel trowel or other appropriate
 tool. Samples will be collected from approximately 1 foot below the surface of the
 stockpiled soil;
- 4. The collected soil will be placed directly in a clean, pre-labeled sample jar and sealed with a teflon-lined cap.;
- 5. A sufficient number of samples will be collected to satisfy disposal facility requirements.
- 6. Samples will be labeled noting the location, data, time, and sampler's initials. Sample details will be recorded in the hard-cover bound field book; and
- 7. Samples will be placed in ice or cooler packs in laboratory supplied coolers after collection.

Characterization samples will be analyzed for PCBs and other parameters necessary for waste acceptance at the selected disposal facility(ies).

4. Field Log

The field log book will be a bound document with consecutively numbered pages. The entries for each day will commence on a new page which will be dated. Entries will be made only in indelible ink. Corrections will be made by marking through the error with a single line, so as to remain legible, and initialing this action followed by writing the correction. The field log books generated will be numbered consecutively and maintained by GHD.

The following information will be recorded in the field log book for each sample collected:

- i) Site location identification
- ii) Unique sample identification number
- iii) Date and time (in 2400 hour time format) of sample collection
- iv) Weather conditions
- v) Designation as to the type of sample (sediment, soil, or water)
- vi) Designation as to the means of collection
- vii) Name of sampler
- viii) Analyses to be performed on sample
- ix) Any other relevant comments such as odor, staining, texture, filtering, preservation, etc.

5. Sample Shipment and Containers

5.1 Chain-of-Custody Forms

Chain-of-custody records will be used to track samples from time of sampling to the arrival of samples at the laboratory.

Each shipping container being sent to the laboratory will contain a chain-of-custody form. The chain-of-custody form consists of four copies which are distributed to the sampler, to the shipper, to the contract laboratory and to the office file of GHD. The sampler and shipper will maintain their copies while the other two copies are enclosed in a water proof enclosure within the sample container. The laboratory, upon receiving the samples, will complete the remaining copies. The laboratory will maintain one copy for its records. The executed original will be returned to GHD with the data deliverables package.

5.2 Sample Containers and Handling

Required sample containers, sample preservation methods, maximum holding times and filing instructions are provided in the QAPP.

Samples will be placed in appropriate sample containers, labeled, and properly sealed. In addition, sample labels will include sample number, place of collection, date and time of collection, and analyses to be performed. Samples will be cushioned within the shipping coolers by the use of vermiculite and/or bubble pack. Samples will be kept cool by the use of plastic bags of ice or cooler packs, as required and each sample will have an individual sample tag.

Samples will be shipped by commercial courier on a daily basis to the project laboratory.

Two seals comprised of GHD's chain-of-custody tape will be placed around each shipping cooler prior to shipment to secure the lid and provide evidence that the samples have not been tampered with en route to the laboratory. Clear tape will be placed over the seals to ensure that they are not accidentally broken during shipment.

Upon receipt of the cooler at the laboratory, the cooler will be inspected by the designated sample custodian. The condition of the cooler and seal will be noted on the chain-of-custody form by the sample custodian. The sample custodian will document the date and time of receipt of the cooler and sign the chain-of-custody forms.

The sample custodian then will check the contents of the cooler with those samples listed on the chain-of-custody form. If damage or discrepancies are noticed, they will be recorded in the remarks column of the chain-of-custody form, dated and signed. They will be reported to the laboratory supervisor who will inform the laboratory manager and QA officer.

Sample disposal will be the responsibility of the laboratory. Upon disposal, the laboratory shall sign the next open "Relinquished by" box, and the word "Disposed" will be written in the "Received by" box.

Appendix I

Ambient Air Quality Monitoring Program (AAQMP)

Ambient Air Quality Monitoring Plan (AAQMP)

Pilot Perimeter Groundwater Trench Collection System

General Motors, LLC

Bedford, Indiana 013968 | Report No 388 | February 19, 2016

Table of Contents

	1.	Introd	luction	1		
	2.	Expo	Exposure Standards and Guidelines2			
	3.	Dust	ust Action Level Derivation from PCB Data3			
	4.	Real-	Time Monitoring	5		
	5.	Work	Zone Monitoring	5		
	6.	Field	Documentation	6		
	7.	Quality Assurance / Quality Control (QA/QC) and Reporting				
Та	ble	Ind	ex			
	Table	2.1	Occupational Exposure Limits and Guidelines	2		
	Table	2.2	Community Exposure Guidelines (Inhalation)	3		
	Table	3.1	Real Time Air Monitoring Site Action Levels	4		

List of Acronyms

AAQMP Ambient Air Quality Monitoring Plan

ACGIH American Conference of Governmental Industrial Hygienists

Facility General Motors LLC Bedford Casings, Engines and Transmissions Facility

GHD GHD Services, Inc.GM General Motors, LLC

IDEM Indiana Department of Environmental Management

IDLH Immediately Dangerous to Life and Health

IM Interim Measures

mg/m³ mg per cubic meter of air

NAAQS National Ambient Air Quality Standards

NE Not Established

NIOSH National Institute for Occupational Safety and Health

OSHA Occupational Safety and Health Administration

PCBs Polychlorinated Biphenyls

Pilot Trench Pilot Perimeter Groundwater Trench Collection System

PEL Permissible exposure limit

PPE Personal Protection Equipment

QA/QC Quality Assurance/Quality Control

QAPP Quality Assurance Project Plan

RA Removal Action

SES Sevenson Environmental Services

TLV Threshold Limit Value
TWA time weighted average

U.S. EPA United States Environmental Protection Agency

1. Introduction

This Ambient Air Quality Monitoring Plan (AAQMP) was prepared by GHD, Services, Inc. (GHD) for Interim Measure (IM) activities to be completed for the construction the Pilot Perimeter Groundwater Trench Collection System (Pilot Trench), at the General Motors LLC (GM) Bedford Casings, Engines and Transmissions (CET) Facility (Facility), located in Lawrence County, Indiana. The Pilot Trench will be constructed at the northeast corner of the Facility property west of Bailey Scales Road, with supporting temporary construction facilities (temporary access roads, staging areas) located to the north, west and south of the Pilot Trench with the combined Pilot Trench and support areas hereto referred to as the Site. The purpose of the AAQMP is to present the scope of work for ambient air monitoring activities which will be conducted during construction of the Pilot Trench. The Pilot Trench construction activities will require the excavation of soils and bedrock potentially impacted with polychlorinated biphenyls (PCBs) at low levels (<50 ppm). The objective of this air monitoring program is to quantify the airborne concentrations of contaminants, if any, at the locations of the nearest potential receptors. PCB concentrations in soils (within the excavation area) were detected at levels ranging from non-detect to a maximum concentration of 42.2 mg/kg. The purpose of this work plan is to address air monitoring during the PCB-impacted soil excavation and subsequent loading for offsite transport and disposal. The specific objectives include the following:

- Perform real-time air monitoring for total dust in and around the work area to characterize
 potential exposures to workers in the exclusion zone and those in the area around the exclusion
 zone.
- Perform real-time air monitoring for total dust levels to evaluate potential fugitive dust emissions containing PCBs at the property boundaries of the Site.
- Establish and implement procedures to ensure appropriate responses to elevated levels of
 particulate matter. This may include slowing or stopping work activities, identifying areas
 requiring respiratory protection, application of dust suppressants or arranging for a timely
 evacuation of the work site in the event that hazardous concentrations of airborne emissions
 are detected.
- Perform background perimeter air monitoring to establish baseline real-time dust concentrations.
- Communicate the hazards associated with exposures to dust and PCB-impacted dust to the affected workers and other potential receptors.
- Provide recommendations for controlling site exposures, respiratory protection and other personal protective equipment (PPE) to site management.

GHD will conduct Site perimeter air monitoring during work activities in which PCB-impacted soils are encountered and have the potential for creating airborne dust. This perimeter monitoring will continue until potential worker/community exposures to PCBs and dust are mitigated. The air monitoring data will be collected and compiled in accordance with established guidelines. In addition, the results will be communicated to GM, site workers, and others as required and/or as necessary to ensure the safety and health of potentially affected individuals.

2. Exposure Standards and Guidelines

The U.S. Occupational Safety and Health Administration (OSHA) promulgate workplace standards to protect the safety and health of workers. The administration of these standards has been delegated to the Indiana Occupational Safety and Health Administration (IOSHA), which is part of the Indiana Department of Labor. The IOSHA standards are identical to the OSHA standards an apply to all places of employment in the state, with the exception of federal government employees, the U.S. Postal Service, private sector maritime activities, and certain agricultural operations. The National Institute for Occupational Safety and Health (NIOSH) and the American Conference of Governmental Industrial Hygienists (ACGIH) have established guidelines to protect workers from chemical hazards on the job. Table 2.1 summarizes the OSHA permissible exposure limits (PEL), NIOSH Immediately Dangerous to Life and Health (IDLH) guidelines, and ACGIH threshold limit values (TLV) for PCBs and total dust.

Table 2.1 Occupational Exposure Limits and Guidelines

Analyte	IOSHA PEL	ACGIH-TLV	NIOSH - IDLH ³	Units
	TWA ¹	TWA ²		
PCBs (chlorodiphenyl 54%)	0.5	0.5	5	mg/m ³
Total Dust ⁴	15	10	NE	mg/m ³

Notes:

- Permissible Exposure Limit Time Weighted Average (PEL-TWA) = An 8-hour time weighted average.
 An exposure to any material listed in 29 CFR 1910.1000, Tables Z1 and Z2, in any 8-hour work shift of a 40-hour workweek shall not exceed the 8-hour time weighted average limit given for that material in the table.
- 2. Threshold Limit Value Time Weighted Average (TLV-TWA) = The TWA concentration for a conventional 8-hour workday and a 40-hour workweek, to which nearly all workers may be repeatedly exposed, day after day, without adverse effect (ACGIH, 2015).
- Immediately Dangerous to Life and Health (IDLH) = Indicates an exposure to airborne contaminants
 that is likely to cause death or immediate or delayed permanent adverse health effects or prevent
 escape from such an environment.
- 4. A TLV for Particles Not Otherwise Specified (PNOS) has not been established. ACGIH recommends that airborne concentration for these compounds be kept below 10 mg/m³.

The U.S. Environmental Protection Agency (U.S.EPA) has established National Ambient Air Quality Standards (NAAQS) for five primary pollutants, including particulate matter (dust). The NAAQS for particulate matter are based on a 24-hour average. The NAAQS are derived at levels designed to protect public health, and are based on the known effects of each substance on human health, vegetation and other components of the environment such as soil, water, materials (e.g., metalwork and masonry), visibility and personal comfort and well-being.

There currently is no NAAQS for PCBs. However, U.S.EPA has established generic community exposure limits in the risk-based screening table (target cancer risk of 1E-6). The selected criterion for the residential risk based screening level (low risk) is 0.000281 mg/m³.

The community exposure guideline values for the identified COI are summarized in Table 2.2:

Table 2.2 Community Expo	sure Guidelines (Inhalation)
--------------------------	------------------------------

Compound of Interest (COI)	Averaging Period	Exposure Standard/Guideline	Units		
Particulate Matter (PM-10) ¹	24-hour	0.15	mg/m ³		
PCBs	24-hour	0.000281	mg/m ³		
Notes:					
1. PM10 is particulate matter 10 micrometers or less in diameter					

3. Dust Action Level Derivation from PCB Data

Work area and community action levels have been established to facilitate a timely and appropriate response to the detection of airborne hazards associated with airborne dust. Action levels have been set at levels lower than the established exposure limits and guidelines. The purpose is to ensure that if these levels are detected, they are effectively communicated to affected workers and Site management so that appropriate actions can be taken to reduce airborne concentrations to acceptable levels. The site-specific action levels for the project are listed in Table 3.1. The real-time dust monitoring data will be compared to the PELs for dust of 15 mg/m³. The concentration of PCB in soil (based on previous soil investigations) will be used to establish the PCB action level by estimating the concentration of airborne PCB-containing dust as outlined below.

No real-time methods exist for detection of airborne PCBs. Measuring the total dust concentration provides the quickest means of screening potential exposure to workers and the community. The total dust concentration necessary to reach the work area action level of 0.5 mg/m³ (OSHA PEL) can be estimated from the soil sampling data. This estimate is based on calculating the Equivalent Airborne Dust Concentration based on the applicable exposure limit (EADC_{EL}). The EADC_{EL} calculation determines what dust level would equal the exposure limit for a specific soil contaminant, in this instance, PCBs. The following equation shows this relationship.

$$\begin{aligned} \text{EADC}_{\text{EL}} &= \text{EL x Conc}^{\text{-1}}_{\text{Contaminated soil}} \text{ x } 10^6 \\ \text{Where:} \quad &\text{EL} \\ &\text{Conc}^{\text{-1}}_{\text{Contaminated soil}} \end{aligned} = \begin{aligned} &\text{Exposure Limit, mg/m}^3 \\ &= \text{Inverse of the soil PCB concentration, kg/mg} \end{aligned}$$

The maximum soil concentration of PCBs is reported to be 42.2 mg of mg/kg of PCBs. Using the equation above, the EADC_{EL} is calculated as shown below:

Total dust = EADC_{EL} =
$$\frac{mg_{soil}}{m_{air}^3}$$
 = $\left(\frac{0.5 \ mg_{PCBs}}{m_{air}^3}\right) \left(\frac{kg_{soil}}{42.2 \ mg_{PCBs}}\right) \left(\frac{10^6 mg_{soil}}{kg_{soil}}\right)$ = 11,848 mg/m³

Where: EL = The OSHA PEL of 0.5 mg/m³

Conc⁻¹_{Contaminated soil} = One kg of soil contains 42.2 mg of PCBs and 10⁶ = The number of mg of soil in a kg of soil

This calculated total dust concentration (11,848 mg/m³) is unlikely and PCB-specific personal (worker) exposure sampling is not required during remediation activities of the Site. As such, real time air monitoring for worker exposure will be based on dust readings as summarized in Table 3.1.

Table 3.1 Real Time Air Monitoring Site Action Levels

Analyte	Action Level	Description of Action
Total Dust Readings (Work Zone Action	< 5.0 mg/m ³ ≥ 5.0 - < 15 mg/m ³	No action required Apply water or dust suppressant soils generating the dust.
Levels) ¹	≥ 15 mg/m ³	Initiate Stop Work Authority (SWA). Notify onsite Safety & Health Officer (SES HSO) and construction superintendent. Institute engineering controls to reduce dust levels.
Total Dust Readings ² (Perimeter Action	< 0.15 mg/m ³	No action required. Continue monitoring at upwind perimeter (background) and at up to three perimeter downwind locations. ³
Levels) ³	≥ 0.15 mg/m ³	 Initiate SWA, immediately measure the upwind background level using the same monitor. Determine primary source of dust and then apply water or dust suppressant to dusting surfaces. Continue dust monitoring activities with increased focus on downwind dust levels until readings are consistently below 2.5 mg/m³. If dust suppression efforts do not reduce perimeter dust concentrations below 2.5 mg/m³ within 15 minutes after initiate SWA and consult with the PM, Project CIH, and others as appropriate to determine an appropriate course of action to reduce dust levels to acceptable levels.

Notes:

- 1. Work area action Levels are based on sustained (>1 min) airborne concentrations within the worker's breathing zone. Spurious or non-sustained peak readings or surface, contact readings while cause for concern may not indicate the need for additional action requiring PPE upgrade.
- 2. Perimeter dust readings will be taken upwind (background) prior to initiating work.
- 3. Dust readings will be taken over an integrated (average) sampling period not to exceed 15 minutes.

The maximum PCB concentration in the soil samples collected was also used to determine the $EADC_{EL}$ for community exposures. The community exposure limit for PCBs is 0.000281 mg/m³ (based on a 24-hour average). This value is a risk based limit derived using the low risk U.S. EPA Regional Screening Levels for PCBs (based on a cancer risk level of 1E-06) and the anticipated 1 - 2 month exposure duration. Using the same maximum soil concentration reported for PCBs, the community $EADC_{EL}$ is calculated as follows:

The average dust concentration measured during the work day (10 hours) can be used to estimate a 24-hour average dust concentration by incorporating a dust level value of 0.000 mg/m^3 for non-working hours. The averaged data will be compared to the NAAQS for dust and the EADC_{EL} for PCBs.

4. Real-Time Perimeter Dust Monitoring

Real-time air monitoring for dust will be performed during work operations involving the disturbance/handling of impacted material (remedial activities) using TSI Dustrak aerosol monitors or equivalent. The instruments will be calibrated and operated in accordance with the manufacturer's specifications or applicable test/method specifications. Real-time air monitoring will be performed at the Site perimeter - one upwind (background) and up to three downwind locations. Perimeter Dust Monitoring.

DustTraks will be placed prior to the beginning of each work day and programmed to continuously monitor dust concentrations taking 15-minute time weighted average (TWA) readings. The DustTraks will be housed in rugged environmental enclosures. Each enclosure will be attached to a surveying tripod and powered by a deep cycle marine battery (or similar). Each DustTrak will be connected to a Netronix modem that will stream the data (in real time) to a secure website called Environet. Access to the website will be limited to the individuals designated by the Project Manager. The Environet website allows authorized users to set custom alert levels that will send an email if an alarm or some other threshold is triggered at the site.

- Particulate dust levels will be monitored at up to four locations which include one upwind location to monitor dust background concentrations and up to three downwind locations to monitor dust levels leaving the site.
- 2. Dust levels will be integrated over a period not to exceed 15 minutes therefore the dust monitors will be set to record the 15-minute time-weighted average over this period. The action level will be set at 0.15 mg/m³ over the 15 minute TWA.
- 3. If particulate levels are detected in excess of 0.15 mg/m³for two consecutive 15 minute intervals, the upwind background level must be measured immediately using the same portable monitor. If the working site particulate measure is greater than 0.10 mg/m³ above the background level, additional dust suppression techniques must be employed to reduce the generation of fugitive dust.

5. Work Zone Monitoring

The general contractor, Sevenson Environmental Services (SES), will use dust monitors in the immediate work area (worker's breathing zones) and at designated off-site locations (if necessary) to monitor airborne dust concentrations. At the conclusion of each work shift, the recorded data from these instruments will be filed, downloaded, and stored by SES.

If airborne concentrations of dust or VOCs are detected above the action levels established for the site, designated site safety personnel, site superintendents, affected workers, and/or GHD representatives will be notified and appropriate actions will be taken to ensure the health and safety of the site workers.

A portable meteorological station will be set up and maintained onsite to provide wind speed, wind direction, and other meteorological measurements. This information will be used to determine potential down-wind receptors in the event of detections from any real-time instruments. The meteorological information will also be archived and available during the reporting process to assist in analysis of perimeter monitoring data.

6. Field Documentation

Appropriate field documentation will be collected including a daily activity log, calibration logs, air monitoring field forms, site observations, and other pertinent monitoring documentation. Real-time air monitoring data and supporting documentation collected during this project will be stored in a secure electronic database that only necessary and authorized GHD personnel can access. GHD will utilize a custom database application that will upload data directly to a secure GHD server, which will be backed up daily.

The daily activity logs will consist of observations and field notes taken throughout the work shift. The daily log will be recorded either in bound log books or on pre-printed daily log forms. To the extent possible, GHD will document work activities observed throughout each day to better correlate these activities with elevated air contaminant concentrations.

Quality Assurance / Quality Control (QA/QC) and Reporting

DustTrak data will be downloaded from Environet and stored on-a secure GHD server. Manually-collected and automatically recorded real-time data will be reviewed to ensure accuracy and completeness. Data entry forms and field notes will be kept on-site and retained for reference upon completion of the project. Errors identified during the QA/QC process in field notes or data will be noted appropriately, while retaining original information to ensure a proper historical record.

During the project, interim reporting of results may be required. This may include data summaries, maps, or other presentations of preliminary monitoring results. Such reporting will be considered preliminary.