

Worldwide Facilities Group Remediation Team

November 23, 2004 Reference No. 13968

Mr. Peter Ramanauskas Project Manager for IND 0060306099 Waste, Pesticide and Toxins Division U.S. EPA Region 5 77West Jackson Blvd. (DW-8J) Chicago, IL 60604-3590

Dear Mr. Ramanauskas:

Re: GM Powertrain – Bedford Plant, IND 006036099

Voluntary RCRA Corrective Action

RCRA Facility Investigation Work Plan: Addendum No. 7

GM Powertrain Group, Bedford Indiana Plant

Bedford, Indiana

Please find enclosed a RCRA Facility Investigation (RFI) Work Plan: Addendum No. 7 (RFI Work Plan: Addendum No. 7) for the Performance-Based RCRA Corrective Action project at the GM Bedford Powertrain – Bedford Plant, 105 GM Drive, Bedford, Indiana. This RFI Work Plan: Addendum No. 7 is being submitted pursuant to the Performance-Based Corrective Action Agreement between the U.S. EPA and General Motors, signed March 20, 2001, and amended October 1, 2002.

Should you have any questions regarding this document, please do not hesitate to contact me at 248-753-5799.

Yours truly,

General Motors Corporation

Chen R. Hut

Cheryl R. Hiatt Project Manager

MKK/rcc/23

Encl.

c.c.: See Attached Distribution List

GM Bedford Distribution List

		copy sent (y/n)
	U.S. EPA - Waste, Pesticide and	
Peter Ramanauskas	Toxins Division, Project Manager	yes
	U.S. EPA – Emergency Response	
Brad Stimple	Branch, On-Scene Coordinator	yes
	U.S. EPA – Emergency Response	
Ken Rhame	Branch On-Scene Coordinator	yes
Stacey DeLaReintrie	Tetra Tech EM Inc.	yes
John Bassett	Earth Tech	yes
John Gunter (5 copies)	IDEM Management	yes
Dan Sparks	U.S. Fish and Wildlife Service	yes
Lori Pruitt	U.S. Fish and Wildlife Service	yes
Ed Peterson	GM WFG Remediation	yes
Cheryl Hiatt	GM WFG Remediation	yes
Jim McGuigan	CRA Project Coordinator	yes
Rick Bodishbaugh	Exponent	yes
C.Y. Jeng	ENVIRON	yes

RCRA Facility Investigation Work Plan: Addendum No. 7

Hourly Parking Lot (AOI 21) Surface Soil Delineation

This Resource Conservation Recovery Act (RCRA) Facility Investigation (RFI) Work Plan: Addendum No. 7 (RFI Work Plan: Addendum No. 7) has been prepared in accordance with the Performance-Based Corrective Action Agreement (Agreement), signed with the United States Environmental Protection Agency (U.S. EPA) for the Bedford Facility on March 20, 2001, as amended on October 1, 2002. This Agreement states that General Motors (GM) will work with the U.S. EPA to identify and define the nature and extent of releases of hazardous waste and/or hazardous constituents at or from the Bedford Facility.

The purpose of this RFI Work Plan: Addendum No. 7 is to delineate the extent of elevated polychlorinated biphenyls (PCBs), lead, and mercury in surface soil identified during implementation of the RFI Work Plan Addendum No. 3 (Hourly Parking Lot). Specifically, two areas (Areas 1 and 2) southwest of the intersection of GM Drive and Breckenridge Road were identified to contain elevated concentrations of PCBs in surface soil. Also, samples collected from borings B-X102Y258 and B-X114Y258 exhibited lead and mercury, respectively, within the surficial soil (Area 3). Therefore, additional horizontal delineation of surface soil in these areas is proposed. A fourth area (Area 4) was identified to exhibit elevated PCB concentrations within the surficial soil during previous investigations. This area will be further defined vertically during implementation of this RFI Work Plan: Addendum No. 7. All additional delineation activities are necessary in order to evaluate potential interim measures activities (e.g., soil removal, additional stormwater management, etc.).

A fifth area (filled area north of Breckenridge Road) was also noted to contain PCBs greater then 5.3 mg/kg both at the surface and at 6-8 feet below ground surface (bgs). Additional samples were collected in this area during completion of test pits, as part of the RFI Work Plan Addendum No. 4. This area will be further investigated under a separate work plan in the near future.

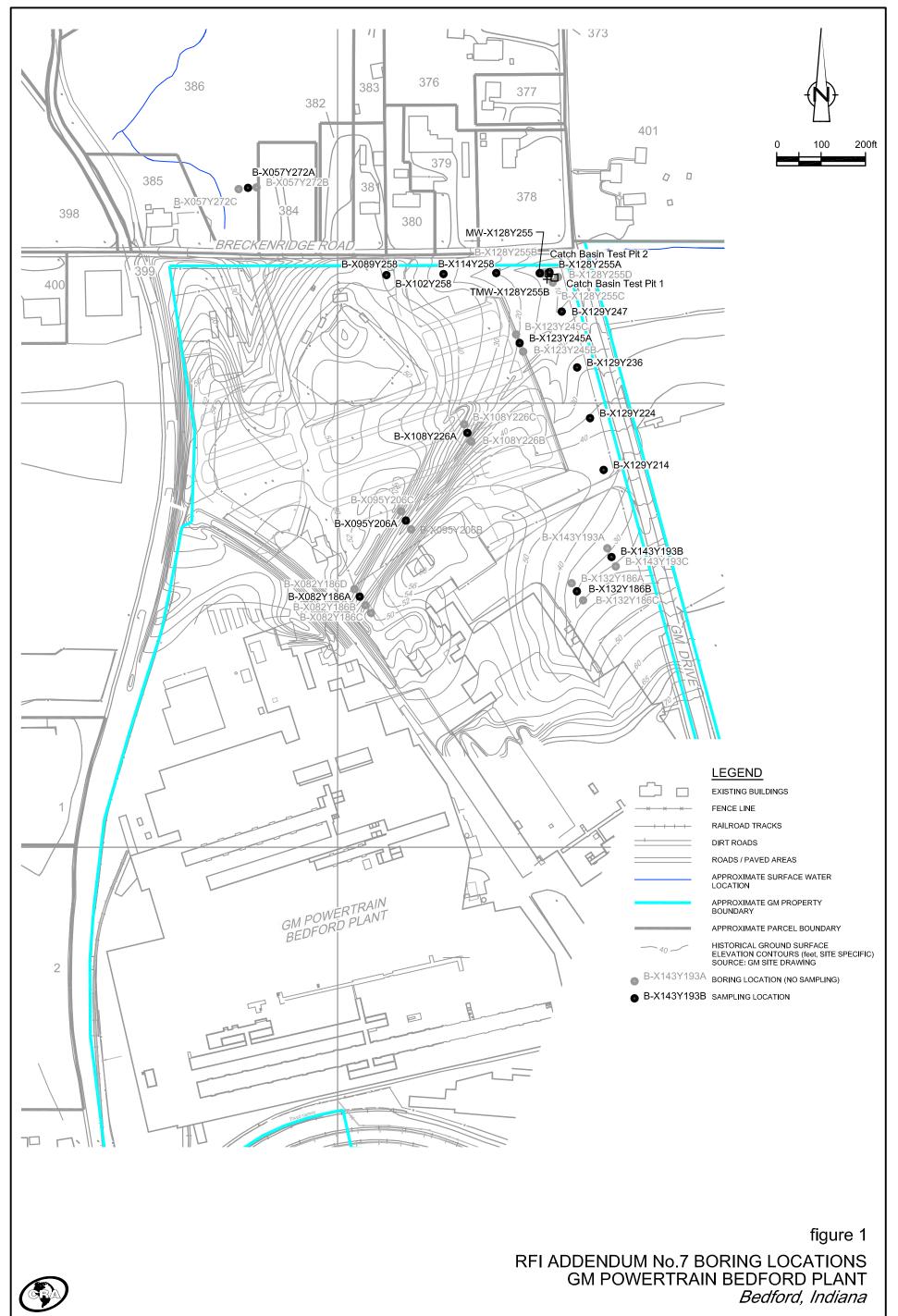
Areas 1 and 2

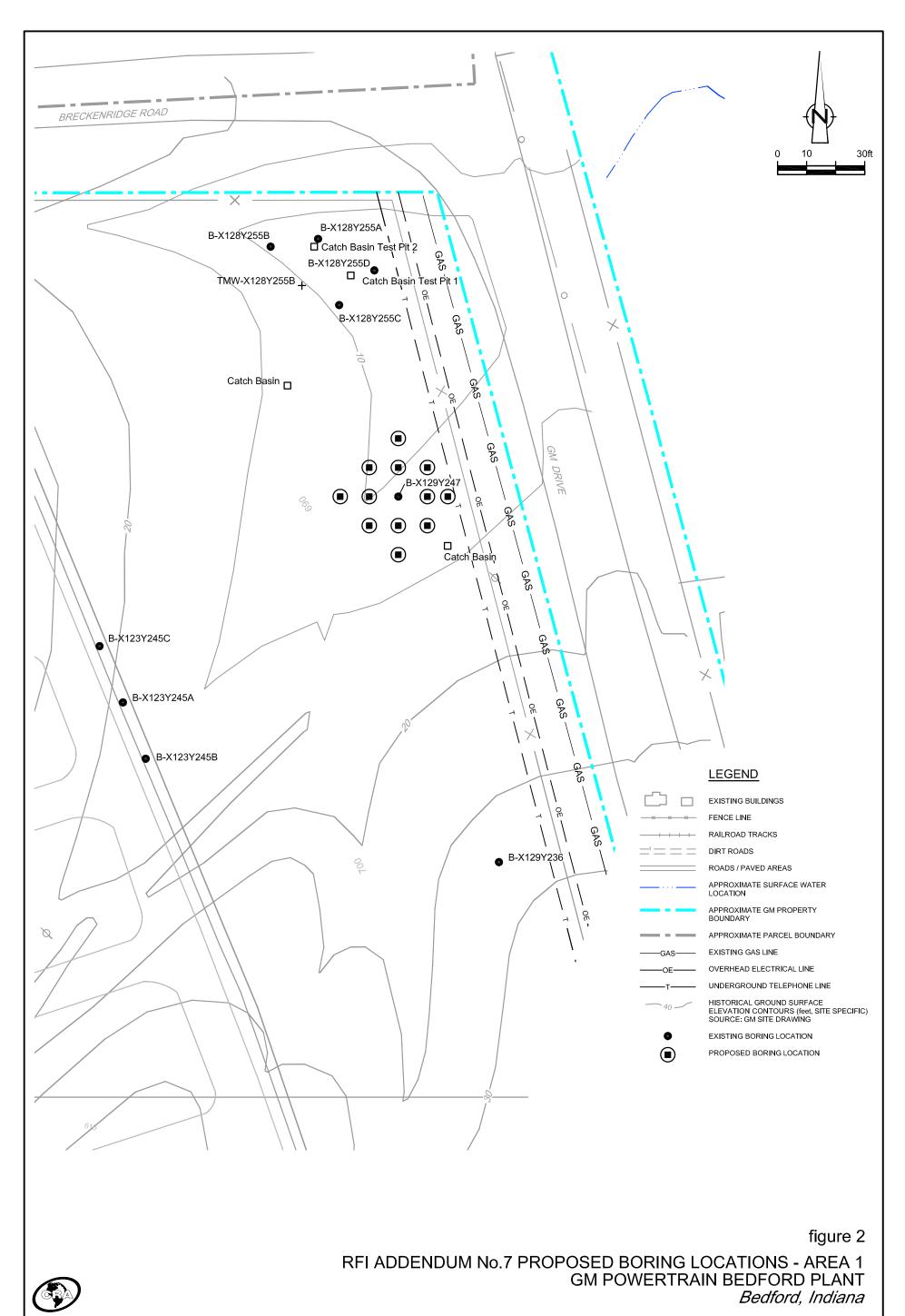
The attached Figure 1 presents the soil sample locations for the work that was completed under the RFI Work Plan Addendum No. 3. Table 1 presents the final, validated soil data for these sampling locations. As presented in Table 1, two locations in the area southwest of the GM Drive/Breckenridge Road intersection exhibited elevated PCB concentrations in the surficial soil (B-X129Y247 and B-X143Y193B). Tables 2 and 3 present additional samples collected from the storm sewer collection system prior to cleaning.

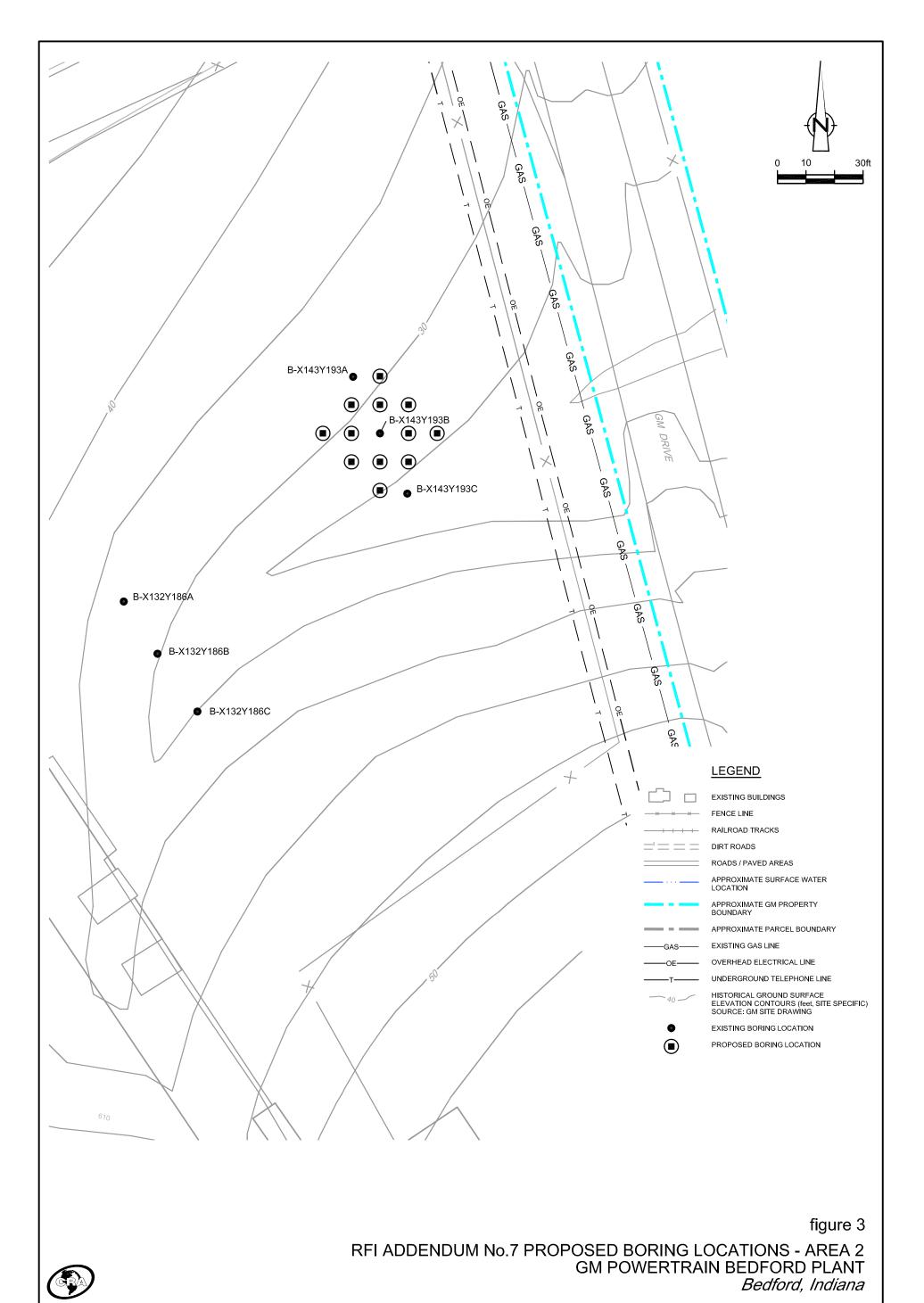
Figure 2 and Figure 3 present the two locations described above in greater detail. These figures present the proposed soil borings to be completed to further delineate the extent of contaminants in the surficial soil. Twelve soil borings surrounding each previous sample location will be advanced to a depth of approximately ten feet bgs (or bedrock surface, whichever is shallower). These borings will be advanced using a hydraulic-push drill rig (e.g., GeoProbeTM or similar). Soil samples will be collected every two feet during advancement. Initially, a soil sample from the upper three intervals (0-2'; 2-4', and 4-6' bgs) at each of the proposed borings will be submitted to Severn-Trent Laboratories (STL) for analysis of PCBs by EPA method 8082 on a one-week turnaround basis.

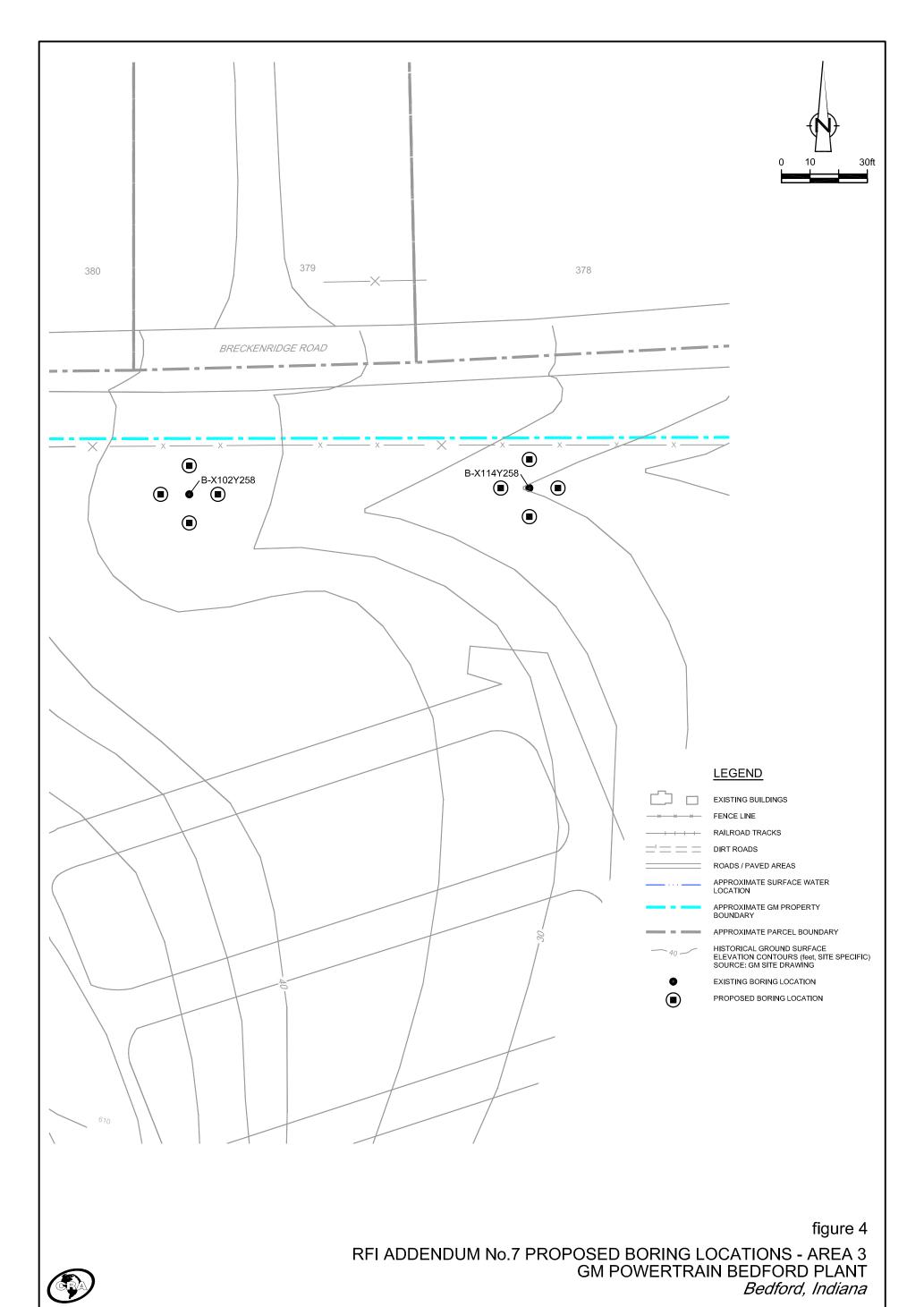
If the preliminary results from these initial samples indicate that the area has been sufficiently defined, then additional samples will not be submitted for analysis. If, based on preliminary data from the proposed investigation, there are areas where adequate definition is not obtained after all samples have been analyzed (if needed), additional sampling will be completed by continuing to step out in a similar fashion (i.e., approximate 10 feet increments) and submitting the appropriate samples for laboratory analysis.

Area 3


Elevated concentrations of lead and mercury were detected within the surface soil at two locations south of Breckenridge Road (lead at B-X102Y258 and mercury at B-X114Y258). Figure 4 presents the location of these borings and the proposed additional delineation samples. Additional delineation of the surface soil will be completed through the advancement of soil borings located approximately 10 to the east, south, west, and north of each of the original locations. Surficial soil samples will be submitted for analysis of the Target Analyte List (minus the earth metals). Samples will be submitted to STL on a one-week turnaround basis.


Area 4


Soil samples will be collected continuously to bedrock, as near as possible to the monitoring well location MW-X045Y258 (see Figure 5 for the location of Area 4). Soil samples will be collected in accordance with the original RFI Work Plan to delineate this area vertically. Soil samples will be submitted to STL for the RFI list of parameters on a one-week turnaround basis.


All investigative, sampling, health & safety, and quality procedures will be conducted in accordance with the existing RCRA Facility Investigation Work Plan (CRA, 2001), and supporting documents.

Based on verbal approval from the U.S. EPA provided on October 12, 2004, the work described above has been implemented. The preliminary results and proposed IM for this area will be transmitted once the data are received. Validated results will follow once completed.

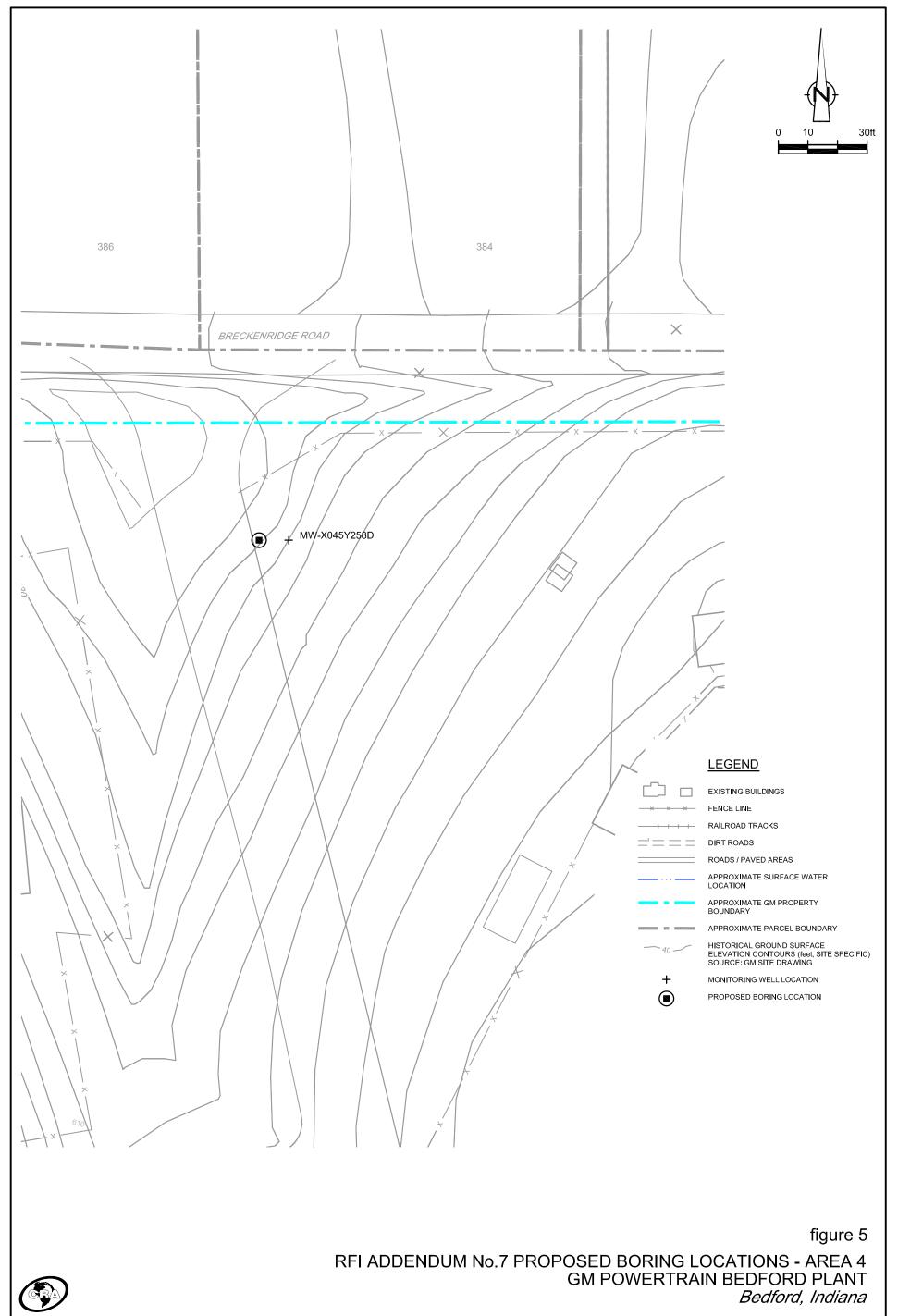


TABLE 1

ANALYTICAL RESULTS SUMMARY RTI Work Plan Addendum No. 3 GM POWERTRAIN - BEDFORD PLANT BEDFORD, IN

Sample Location:		B-X057Y172A	B-X057Y:72A	B-X057Y272A	B-X082Y:86A	B-X082Y:86A	B-X082Y:86A	B-X082Y:86A							
Sample ID:		S-040704-JC-044	S-040704-IC-045	S-040704-JC-046	S-040504-1C-035	S-040504-jC-036	S-040504-)C-037	S-040504-KC-038	B-X089?258	B-X089°258	B-X089:258	B-X095Y206A	B-X095Y206A	B-X095Y206A	B-X0951206A
Sample Date:		4/7/20(4	4/7/20(4	4/7/2004	4/5/2014	4/5/2044	4/5/20#4	5-040504-jc-038 4/5/2044	S-041304-;C-053	S-041304-;C-054	S-041304-;C-055	S-040604-'C-039	S-040604-[C-040	S-040604-C-041	S-040604-1C-042
Sample Depth:		(0-2)	(6-8)	(26-28.4)	(0-2)	(0-2)	(6-8)	(32-34)	4/13/2004	4/13/2(04	4/13/2(04	4/6/20)4	4/6/20)4	4/6/2014	4/6/2014
				,	(0.2)	Duplicate	(0-0)	(32-34)	(0-2)	(6-8,	(6-8,	(0-2;	(6-8)	(18-20)	(28-294)
	Units					Supment					Duplicite				
Volatiles															
1,1,1-Trichloroethane	ug/kg	ND (5.0)	ND (5.1)	ND (5.7)	ND (4.7)	ND (5.5)	ND (5.5)	ND (6.0)	ND (5.3)	ND (6.1)	ND (5.3)	ND (4.9)	ND (5.5)	NID (OM)	NTD (41)
1,1,2,5-Tetrachloroethane	ug/kg	ND (5.0)	ND (5.1)	ND (5.7)	ND (4.7)	ND (5.5)	ND (5.5)	ND (6.0)	ND (5.3)	ND (6.1)	ND (5.3)	ND (4.7)	ND (5.5)	ND (280) ND (280)	ND (6.1) ND (6.1)
1,1,2-Trichloroethane	ug/kg	ND (5.0)	ND (5.1)	ND (5.7)	ND (4.7)	ND (5.5)	ND (5.5)	ND (6.0)	ND (5.3)	ND (6.1)	ND (5.3)	ND (4.2)	ND (5.5)	ND (28) ND (28)	ND (6.1)
1,1-Dichloroethane	ug/kg	ND (5.0)	ND (5.1)	ND (5.7)	ND (4.7)	ND (5.5)	ND (5.5)	ND (6.0)	ND (5.3)	ND (6.1)	ND (5.3)	ND (4.3)	ND (5.5)	ND (28)	ND (6.1)
1,1-Dirhloroethene	ug/kg	ND (5.0)	ND (5.1)	ND (5.7)	ND (4.7)	ND (5.5)	ND (5.5)	ND (6.0)	ND (5.1)	ND (6.1)	ND (5.3)	ND (4.9)	ND (5.5)	ND (280)	ND (6.1)
1,2,4-Trichlorobenzene	ag/kg	ND (5.0)	22	ND (5.7)	ND (4.7)	ND (5.5)	ND (5.5)	ND (6.0)	ND (5.3)	ND (6.1)	ND (5.3)	ND (4.9)	ND (5.5)	ND (280)	ND (6.1)
1,2-Diromo-3-chloropropane (DBCP)	ag/kg	ND (10)	ND (10)	ND (11)	ND (9.4)	ND (11)	ND (11)	ND (12)	ND (11)	ND (12)	ND (1!)	ND (9.3)	ND (1:)	ND (560)	ND (12)
1,2-Diromoethane (Ethylere Dibromide)	1g/kg	ND (5.0)	ND (5.1)	ND (5.7)	ND (4.7)	ND (5.5)	ND (5.5)	ND (6.0)	ND (5.1)	ND (6.;)	ND (5.3)	ND (4.9)	ND (5.6)	ND (280)	ND (6.1)
1,2-Di:hlorobenzene	1g/kg	ND (5.0)	1.1 J	ND (5.7)	ND (4.7)	ND (5.5)	ND (5.5)	ND (6.0)	ND (5.3)	ND (6.:)	ND (5.3)	ND (4.9)	ND (5,i)	ND (28)	ND (6.1)
1,2-Di:hloroethane	1g/kg	ND (5.0)	ND (5.1)	ND (5.7)	ND (4.7)	ND (5.5)	ND (5.5)	ND (6.0)	ND (5.3)	ND (6.:)	ND (5.3)	ND (4.9)	ND (5.6)	ND (280)	ND (6.1)
1,2-Di:hioropropane	ag/kg	ND (5.0)	ND (5.1)	ND (5.7)	ND (4.7)	ND (5.5)	ND (5.5)	ND (6.0)	ND (5.3)	ND (6.:)	ND (5.3)	ND (4.9)	ND (5.6)	ND (28)	ND (6.:)
1,3-Di:hlorobenzene	1g/kg	ND (5.0)	8.3	ND (5.7)	ND (4.7)	ND (5.5)	ND (5.5)	ND (6.0)	ND (5.3)	ND (6.:)	ND (5.3)	ND (4.9)	ND (5.6)	ND (28))	ND (6.:)
1.4-Dichlorobenzene	1g/kg	ND (5.0)	24	ND (5.7)	ND (4.7)	ND (5.5)	ND (5.5)	ND (6.0)	ND (5.3)	ND (6.:)	ND (5.3)	ND (4.9)	ND (5.6)	ND (28))	ND (6::)
2-Butanone (Methyl Ethyl Katone)	ıg/kg	ND (20	7.2 J	5.0 J	ND (19)	ND (22)	ND (22)	ND (24)	ND (21)	ND (24)	ND (21)	ND (20)	ND (22)	ND (11(0)	ND (24)
2-Hexmone	ug/kg	ND (20	ND (20)	ND (23)	ND (19)	ND (22)	ND (22)	ND (24)	ND (21)	ND (24)	ND (21)	ND (20)	ND (21)	ND (11(0)	ND (24)
4-Methyl-2-Pentanone (Methyl Isobutyl Ketone)	ug/kg	ND (20	2.5 J	2.3 J	ND (19)	ND (22)	ND (22)	ND (24)	ND (21)	ND (24)	ND (21)	ND (20)	ND (22)	ND (11(0)	ND (24)
Acetone	ug/kg	ND (20)	43	23	ND (19)	ND (22)	10 J	ND (24)	ND (21)	ND (24)	ND (21)	ND (20)	ND (22)	ND (11(0)	ND (24)
Benzene	ug/kg	ND (5.0)	0.79 J	ND (5.7)	ND (4.7)	ND (5.5)	ND (5.5)	0.54 J	ND (5.3)	ND (6.1)	ND (5.3)	ND (4.9)	ND (5.6)	ND (28))	ND (6.1)
Bromcdichloromethane	ug/kg	ND (5.0)	ND (5.1)	ND (5.7)	ND (4.7)	ND (5.5)	ND (5.5)	ND (6.0)	ND (5.1)	ND (6.1)	ND (5.3)	ND (4.9)	ND (5.6)	ND (281)	ND (6.1)
Bromcform	ıg/kg	ND (5.0	ND (5.1)	ND (5.7)	ND (4.7)	ND (5.5)	ND (5.5)	ND (6.0)	ND (5.3)	ND (6.1)	ND (5.3)	ND (4.9) UI	ND (5.6) UI	ND (281)	ND (6.1) UI
Bromomethane (Methyl Bromide)	ıg/kg	ND (5.0	ND (5.1)	ND (5.7)	ND (4.7)	ND (5.5)	ND (5.5)	ND (6.0)	ND (5.3)	ND (6.1)	ND (5.3)	ND (4.9)	ND (5.6)	ND (280)	ND (6.1)
Carbon disulfide	ug/kg	ND (5.0	ND (5.1)	ND (5.7)	ND (4.7)	1.9 J	ND (5.5)	ND (6.0)	ND (5.3)	ND (6.1)	ND (5.3)	ND (4.9)	ND (5.6)	64 J	ND (6.1)
Carbon tetrachloride	ug/kg	ND (5.0	ND (5.1)	ND (5.7)	ND (4.7)	ND (5.5)	ND (5.5)	ND (6.0)	ND (5.3)	ND (6.1)	ND (5.3)	ND (4.9)	ND (5.6)	ND (280)	ND (6.1)
Chlorebenzene	1g/kg	ND (5.0	ND (5.1	ND (5.7)	ND (4.7)	ND (5.5)	ND (5.5)	ND (6.0)	ND (5.3)	ND (6.1)	ND (5.3)	ND (4.9)	ND (5.6)	ND (280)	ND (6.1)
Chlorothane Chloroform (Trichloromethane)	∎g/kg	ND (5.0	ND (5.1	ND (5.7)	ND (4.7)	ND (5.5)	ND (5.5)	ND (6.0)	ND (5.3)	ND (6.1)	ND (5.3)	ND (4.9)	ND (5.6)	ND (280)	ND (6.1)
	ug/kg	ND (5.0)	ND (5.1	ND (5.7)	ND (4.7)	ND (5.5)	ND (5.5)	ND (6.0)	ND (5.3)	ND (6.1)	ND (5.3)	ND (4.5)	ND (5.6)	ND (280)	ND (6.1)
Chloremethane (Methyl Chloride) cis-1.2-Dichloroethene	ug/kg	ND (5.0)	ND (5.1	ND (5.7)	ND (4.7)	ND (5.5)	ND (5.5)	ND (6.0)	ND (5.3)	ND (6.1)	ND (5.3)	ND (4.5)	ND (5.6)	ND (284)	ND (6.1)
cis-1,2-Dichloropropene	ug/kg	ND (2.5)	ND (2.6	ND (2.9)	ND (2.4	ND (2.7)	ND (2.7)	37	ND (2.7)	ND (3.0)	ND (2.7)	ND (2.4)	ND (2.8)	ND (144)	1.7]
Cyclotexane	ug/kg	ND (5.0)	ND (5.1	ND (5.7)	ND (4.7)	ND (5.5)	ND (5.5)	ND (6.0)	ND (5.3)	ND (6.1)	ND (5.3)	ND (4.5)	ND (5.t)	ND (284)	ND (6.1)
Dibronochloromethane	ug/kg	ND (10)	0.65 J	ND (11)	ND (9.4	ND (11	ND (11	ND (12	ND (11)	ND (12)	ND (11)	ND (9.8)	ND (11)	ND (560)	ND (12)
Dichlorodifluoromethane (CFC-12)	ug/kg	ND (5.0)	ND (5.1	ND (5.7)	ND (4.7	ND (5.5)	ND (5.5)	ND (6.0)	ND (5.3)	ND (6.1)	ND (5.3)	ND (4.5)	ND (5.6)	ND (284)	ND (6.1)
Ethylbenzene	ug/kg ug/kg	ND (5.0) ND (5.0)	ND (5.1	ND (5.7)	ND (4.7	ND (5.5	ND (5.5	ND (6.0)	ND (5.3)	ND (6.1)	ND (5.3)	ND (4.9) UJ	ND (5.6) UJ	ND (284)	ND (6.1) UJ
Isopropylbenzene	ug/kg ug/kg	ND (5.0)	2.8 J	ND (5.7)	ND (4.7	ND (5.5)	ND (5.5	1.2 J	ND (5.3)	ND (6.1)	ND (5.3)	ND (4.5)	ND (5.6)	ND (280)	ND (6.1)
Methy acetate	ug/kg ug/kg	ND (10)	2.8 J ND (10)	ND (5.7)	ND (4.7	ND (5.5	ND (5.5	ND (6.0	ND (5.3)	ND (6.1)	ND (5.3)	ND (4.5)	ND (5.6)	ND (280)	ND (6.1)
Methy cyclohexane	ug/kg	ND (10)	. ,	ND (11)	ND (9.4)	ND (11)	ND (11)	ND (12)	ND (11)	ND (12)	ND (11)	ND (9.8)	ND (11)	95 J	ND (12)
Methyl Tert Butyl Ether		ND (10) ND (20)	2.0 J	ND (11)	ND (9.4)	ND (11)	ND (11)	0.90 J	ND (11)	ND (12)	ND (11)	ND (9.8)	ND (11)	ND (560)	ND (12)
Methylene chloride	tg/kg	. ,	ND (20)	ND (23)	ND (19)	ND (22)	ND (22)	ND (24)	ND (21	ND (24)	ND (21)	ND (20)	ND (22)	ND (110)	ND (24)
Styrene	ιg/kg ιg/kg	ND (5.0) U ND (5.0)	ND (5.1) U	ND (5.7) U	ND (4.7) U	ND (5.5) U	ND (5.5) U	ND (6.0) U	ND (5.3)	ND (6.1)	ND (5.3)	ND (4.9)	ND (5.6)	ND (280) U	ND (6.1)
Tetrachloroothene	tg/kg tg/kg	ND (5.0)	ND (5.1)	ND (5.7)	ND (4.7)	ND (5.5)	ND (5.5)	ND (6.0)	ND (5.3)	ND (6.1)	ND (5.3)	ND (4.9)	ND (5.6)	ND (28()	ND (6.1)
Tolucre			ND (5.1)	ND (5.7)	ND (4.7)	ND (5.5)	ND (5.5)	ND (6.0)	ND (5.3)	ND (6.1)	ND (5.3)	ND (4.9)	ND (5.6)	ND (28()	ND (6.1)
trans-12-Dichloroethene	ug/kg	ND (5.0)	6.2	ND (5.7)	ND (4.7)	ND (5.5)	ND (5.5)	2.3 J	0.56 J	ND (6.1)	ND (5.3)	ND (4.9)	ND (5.6)	ND (280)	ND (6.1)
trans-12-Dichloropropene	ug/kg	ND (2.5)	ND (2.6)	ND (2.9)	ND (2.4)	ND (2.7)	ND (2.7)	ND (3.0)	ND (2.7)	ND (3.0)	ND (2.7)	ND (2.4)	ND (2.8)	ND (140)	ND (3.0)
Trichloroethene	ug/kg	ND (5.0)	ND (5.1)	ND (5.7)	ND (4.7)	ND (5.5)	ND (5.5)	ND (6.0)	ND (5.3)	ND (6.1)	ND (5.3)	ND (4.9)	ND (5.6)	ND (280)	ND (6.1)
Trichlorofluoromethane (CFC-11)	ug/kg	ND (5.0)	ND (5.1)	ND (5.7)	ND (4.7)	ND (5.5)	ND (5.5)	22	ND (5.3)	ND (6.1)	ND (5.3)	ND (4.9)	ND (5.6)	ND (280)	6.1
	ug/kg	ND (5.0)	ND (5.1)	ND (5.7)	ND (4.7)	ND (5.5)	ND (5.5)	ND (6.0)	ND (5.3	ND (6.1)	ND (5.3)	ND (4.9)	ND (5.6)	ND (280)	ND (6.1)
Trifluootrichloroethane (Frem 113) Vinyl chloride	ug/kg	ND (5.0)	ND (5.1)	ND (5.7)	ND (4.7)	ND (5.5)	ND (5.5)	ND (6.0)	ND (5.3	ND (6.1)	ND (5.3)	ND (4.9)	ND (5.6)	ND (280)	ND (6.1)
Vinyl cuoride Xylene(total)	ug/kg	ND (5.0)	ND (5.1)	ND (5.7)	ND (4.7)	ND (5.5)	ND (5.5)	2.2 J	ND (5.3	ND (6.1)	ND (5.3)	ND (4.9)	ND (5.6)	ND (280)	ND (6.1)
Ayune(total)	ug/kg	ND (5.0)	13	ND (5.7)	ND (4.7)	ND (5.5)	ND (5.5)	ND (6.0)	ND (5.3)	ND (6.1)	ND (5.3	ND (4.9)	ND (5.6)	ND (280)	ND (6.1)

TABLE1

ANALYTICAL RESULTS SUMMARY RII Work Plan Addendum No. 3 GM POWERTRAIN - BEDFORD PLANT BEDFORD, IN

Sample Location: Sample ID:		B-X057Y272A S-040704-JC-044	B-X057Y272A S-040704-JC-045	B-X057Y272A S-040704-IC-046	B-X082Y186A S-040504-JC-035	B-X082Y186A S-040504-1C-036	B-X082Y186A S-040504-JC-037	B-X082Y186A S-040504-JC-038	B-X089\258 S-041304- C-053	B-X089\258 S-041304-K:-054	B-X089\258	B-X095Y206A	B-X095Y206A	B-X095Y:06A	B-X095Y:06A
Sample Date:		4/7/2004	4/7/2004	4/7/2004	4/5/2004	4/5/20(4	4/5/20(4	4/5/20(4	5-041304-JL-053 4/13/2014	5-041304-jc-054 4/13/20)4	S-041304-)C-055 4/13/20)4	5-040604-)C-039 4/6/2044	S-040604-jC-040 4/6/2014	S-040604-)C-041 4/6/2014	S-040604-JC-042 4/6/2014
Sample Depth:		(0-2)	(6-8)	(26-28.4)	(0-2)	(0-2)	(6-8)	(32-34)	(0-2)	(6-8)	(6-8)	(0-2)	(6-8)	(18-20)	(28-294)
	Units					Duplicete					Duplicete				,,
Semi-Volatiles	Units														
2,2'-osybis(1-Chloropropant) (bis(2-chloroisopropyl) ether)	1g/kg	ND (37()	ND (416)	ND (420)	ND (380)	ND (394)	ND (410)	ND (430) UJ	ND (400)	ND (40))	ND (40))	ND (35))	ND (37))	ND (40))	ND (431)
2,4,5-Trichlorophenol	ıg/kg	ND (37t)	ND (41()	ND (420)	ND (380)	ND (394)	ND (414)	ND (430) UJ	ND (400)	ND (40))	ND (40))	ND (35))	ND (371)	ND (40))	ND (43))
2.4.6-Trichlorophenol 2.4-Dithlorophenol	ıg/kg	ND (37()	ND (410)	ND (420)	ND (380)	ND (394)	ND (414)	ND (430) UJ	ND (400)	ND (40))	ND (40))	ND (351)	ND (37))	ND (40))	ND (43))
2,4-Dinethylphenol	ıg/kg ₁g/kg	ND (37t) ND (37t)	ND (41() 140 [ND (420) ND (420)	ND (38() ND (38()	ND (390) ND (390)	ND (410)	ND (430) UJ	ND (404)	ND (400)	ND (400)	ND (35))	ND (37))	ND (40))	ND (431)
2,4-Dinitrophenol	1g/kg	ND (1800)	ND (200))	ND (210)	ND (380) ND (180)	ND (390) ND (1900)	ND (410) ND (200)	ND (430) UJ ND (2100) UJ	ND (40+) ND (190)	ND (400) ND (1900)	ND (400)	ND (35))	ND (37))	ND (40))	ND (431)
2,4-Dinitrotoluene	ıg/kg	ND (370)	ND (410)	ND (420)	ND (380)	ND (390)	ND (410)	ND (430) UJ	ND (404)	ND (1900) ND (400)	ND (1900) ND (400)	ND (17(0) ND (35))	ND (1800)	ND (200)	ND (21(0)
2,6-Dinitrotoluene	ug/kg	ND (370)	ND (410)	ND (420)	ND (38()	ND (390)	ND (410)	ND (430) UJ	ND (400)	ND (400)	ND (400)	ND (35))	ND (37)) ND (37))	ND (40) ND (40)	ND (434) ND (434)
2-Chlcronaphthalene	ug/kg	ND (370)	ND (410)	ND (420)	ND (380)	ND (390)	ND (410)	ND (430) UJ	ND (401)	ND (400)	ND (400)	ND (350)	ND (37))	ND (40)	ND (430)
2-Chlcrophenol	ug/kg	ND (370)	ND (410)	ND (420)	ND (380)	ND (390)	ND (410)	ND (430) UJ	ND (409)	ND (40t)	ND (400)	ND (350)	ND (37))	ND (40)	ND (430)
2-Metkylnaphthalene 2-Metkylphenol	ug/kg	ND (370)	ND (410)	ND (420)	ND (380)	ND (390)	ND (410)	ND (430) UJ	ND (400)	ND (401)	ND (400)	ND (350)	85 J	160 J	ND (430)
2-Nitroaniline	ug/kg ug/kg	ND (370) ND (1800)	ND (410) ND (2000)	ND (420) ND (2100)	ND (380) ND (180)	ND (390)	ND (410)	ND (430) UJ	ND (400)	ND (401)	ND (404)	ND (350)	ND (371)	ND (40))	ND (434)
2-Nitrophenol	ug/kg	ND (370)	ND (410)	ND (2100)	ND (180)	ND (190)) ND (39()	ND (200) ND (410)	ND (2100: UJ ND (430) UI	ND (190)	ND (1900)	ND (1900)	ND (1700)	ND (1800)	ND (2000)	ND (2100)
3,3'-Dichlorobenzidine	ug/kg	ND (1800)	ND (2000)	ND (2100)	ND (1800)	ND (190))	ND (200)	ND (2100: U)	ND (400) ND (1900)	ND (400) ND (1900)	ND (400) ND (1900)	ND (350)	ND (371)	ND (400)	ND (434)
3-Nitreaniline	ıg/kg	ND (1800)	ND (200t)	ND (2100)	ND (1800)	ND (190))	ND (200)	ND (2100 U)	ND (1900)	ND (1900)	ND (1900)	ND (1700) ND (1700)	ND (1800) ND (1800)	ND (2000) ND (2000)	ND (210)
4,6-Dinitro-2-methylphenol	ug/kg	ND (1800)	ND (2001)	ND (2100)	ND (1800)	ND (190))	ND (200)	ND (2100 UJ	ND (1900)	ND (1900)	ND (1900)	ND (170)	ND (1800)	ND (2000)	ND (210) ND (210)
4-Bronophenyl phenyl ethe:	ug/kg	ND (370)	ND (410)	ND (420)	ND (380)	ND (390)	ND (410)	ND (430) UJ	ND (400)	ND (400)	ND (400)	ND (350)	ND (370)	ND (400)	ND (434)
4-Chloro-3-methylphenol	∎g/kg	ND (370)	ND (410)	ND (420)	ND (380)	ND (390)	ND (410)	ND (430) UJ	ND (400)	ND (400)	ND (400)	ND (350)	ND (370)	ND (400)	ND (434)
4-Chloroaniline 4-Chlorophenyl phenyl ethe:	tg/kg tg/kg	ND (370) ND (370)	ND (410) ND (410)	ND (420) ND (420)	ND (380) ND (380)	ND (390)	ND (410)	ND (430) UJ	ND (400)	ND (400)	ND (400)	ND (354)	ND (370)	ND (400)	ND (434)
4-Methylphenol	ig/kg	ND (370)	98]	110 [ND (380)	ND (390) ND (390)	ND (410) ND (410)	ND (430) UJ ND (430) UJ	ND (400) ND (400)	ND (400)	ND (400)	ND (354)	ND (370)	ND (404)	ND (434)
4-Nitroaniline	ig/kg	ND (1800)	ND (2000)	ND (2100)	ND (1804)	ND (190))	ND (410)	ND (430) Uj	ND (400) ND (190))	ND (400) ND (1900)	ND (400) ND (1900)	ND (351) ND (170)	ND (370)	ND (404)	ND (430)
4-Nitrophenol	∎g/kg	ND (1800)	ND (2000)	ND (2100)	ND (180)	ND (190))	ND (200))	ND (2100) UJ	ND (190))	ND (190)	ND (1900)	ND (1700)	ND (1800) ND (1800)	ND (200) ND (200)	ND (210) ND (210)
Acenaphthene	ug/kg	ND (370)	ND (410)	ND (420)	ND (380)	ND (390)	ND (410)	ND (430) UJ	ND (400)	ND (400)	ND (400)	ND (350)	ND (370)	ND (401)	ND (430)
Acenaohthylene	ug/kg	ND (370)	ND (410)	ND (420)	ND (380)	ND (390)	ND (410)	ND (430) UJ	ND (400)	ND (400)	ND (400)	ND (350)	ND (370)	ND (401)	ND (430)
Acetophenone Anthrecene	ug/kg	ND (370) 86 J	ND (410) ND (410)	ND (420) ND (420)	ND (380)	ND (390)	ND (410)	ND (430) UJ	ND (40()	ND (400)	ND (400)	ND (350)	ND (370)	ND (400)	ND (430)
Atrazine	ug/kg ug/kg	ND (370)	ND (410)	ND (420) ND (420)	ND (380) ND (380)	ND (390) ND (390)	ND (410) ND (410)	ND (430) UJ ND (430) UJ	ND (400)	ND (400)	ND (400)	ND (350)	ND (371)	ND (400)	ND (430)
Benzallehyde	ug/kg	ND (370) UI	R	ND (420)	ND (380) UJ	ND (390)	ND (410)	ND (430) UJ	ND (400) R	ND (400) R	ND (400) R	ND (350) ND (350)	ND (374) ND (374)	ND (400)	ND (430)
Benzon)anthracene	ug/kg	180 J	ND (410)	ND (420)	ND (380)	ND (390)	ND (410)	ND (430) UI	ND (400)	ND (400)	ND (400)	ND (350)	ND (374) ND (374)	ND (400) ND (400)	ND (430) ND (430)
Benzon)pyrene	ug/kg	120 J	ND (410)	ND (420)	ND (380)	ND (390)	ND (410)	ND (430) UJ	ND (400)	ND (400)	ND (400)	ND (350)	ND (370)	ND (400)	ND (430)
Benzoty,h.i)perylene	ug/kg	240 J	ND (410	ND (420)	ND (380)	ND (390) UJ	ND (410) UJ	ND (430) UJ	ND (400)	ND (400)	ND (400)	ND (350)	ND (370)	ND (400)	ND (430)
Benzo(k)fluoranthene	ug/kg ug/kg	110 J 89 J	ND (410 ND (410	ND (420) ND (420)	ND (380) ND (380)	ND (390) ND (390)	ND (410)	ND (430) UJ	ND (400)	ND (400)	ND (400)	ND (350)	ND (370)	ND (400)	ND (430)
Bipheryl	ug/kg	ND (370	ND (410	ND (420)	ND (380)	ND (390)	ND (410) ND (410)	ND (430) UJ ND (430) UJ	ND (400) ND (400)	ND (400) ND (400)	ND (400) ND (400)	ND (350)	ND (370)	ND (400)	ND (436)
bis(2-Chloroethoxy)methane	ug/kg	ND (370	ND (410	ND (420)	ND (380)	ND (390)	ND (410)	ND (430) UI	ND (400)	ND (400) ND (400)	ND (400)	ND (350) ND (350)	ND (370)	90 J	ND (430)
bis(2-Chloroethyl)ether	ιg/kg	ND (370)	ND (410	ND (420)	ND (380)	ND (390)	ND (410)	ND (430) UJ	ND (400)	ND (400)	ND (400)	ND (350)	ND (370) ND (370)	ND (400) ND (400)	ND (43() ND (43()
bis(2-Bhylhexyl)phthalate	ιg/kg	ND (370)	350 J	ND (420)	ND (380) U	ND (390) U	ND (410) U	ND (430) UJ	ND (400)	ND (400)	ND (400)	ND (350) U	ND (370) U	ND (400) U	ND (430) U
Butyl tenzylphthalate	ıg/kg	ND (370)	ND (410)	ND (420)	ND (380)	ND (390)	ND (410)	ND (430) UJ	ND (400)	ND (400)	ND (400)	ND (35()	ND (370)	ND (400)	ND (43()
Caproletam Carbazole	ıg/kg	ND (370)	ND (410)	ND (420)	ND (380	ND (390)	ND (410)	ND (430) UJ	ND (400)	ND (400)	ND (400)	ND (35()	ND (370)	ND (400)	ND (430)
Chrysme	ιg/kg ιg/kg	ND (370) 190 I	ND (410) ND (410)	ND (420) ND (420)	ND (380 ND (380	ND (390) ND (390)	ND (410) ND (410)	ND (430) UJ	ND (400)	ND (400)	ND (400)	ND (35()	ND (370)	ND (400)	ND (430)
Dibenz(a,h)anthracene	ιg/kg	ND (370)	ND (410)	ND (420)	ND (380	ND (390)	ND (410) ND (410)	ND (430) UJ ND (430) UJ	ND (400) ND (400)	ND (400) ND (400)	ND (400) ND (400)	ND (350) ND (350)	ND (370) ND (370)	ND (400)	ND (430)
Dibenzofuran	tg/kg	ND (370)	ND (410)	ND (420)	ND (380	ND (390)	ND (410)	ND (430) UJ	ND (400)	ND (400)	ND (400)	ND (350)	ND (370) ND (370)	ND (400) 51 J	ND (430) ND (430)
Diethyl phthalate	ιg/kg	ND (370)	ND (410)	ND (420)	ND (380	ND (390)	ND (410)	ND (430) UJ	ND (400)	ND (400)	ND (400)	ND (350)	ND (370)	ND (400)	ND (431) ND (430)
Dimethyl phthalate	ug/kg	ND (370)	ND (410)	ND (420)	ND (380	ND (390)	ND (410)	ND (430) UJ	ND (400)	ND (400)	ND (400)	ND (350)	ND (370)	ND (400)	ND (430)
Di-n-butylphthalate Di-n-oxtyl phthalate	ug/kg	ND (370) ND (370)	ND (410) 430	ND (420)	ND (380	ND (390)	ND (410)	ND (430) UJ	ND (400)	ND (400)	ND (400)	ND (350)	ND (37t)	ND (400)	ND (430)
Fluorathene	ug/kg ug/kg	400	450 79 î	ND (420) ND (420)	ND (380) ND (380)	ND (390) ND (390)	ND (410) ND (410)	ND (430) UJ ND (430) UJ	ND (400) ND (400)	ND (400) ND (400)	ND (400) ND (400)	ND (35()	ND (37()	ND (400)	ND (431)
Fluorene	ug/kg	ND (370)	ND (410)	ND (420)	ND (380)	ND (390)	ND (410)	ND (430) UI	ND (400) ND (400)	ND (400) ND (400)	ND (400) ND (400)	ND (350) ND (350)	ND (37() ND (37()	ND (400)	ND (430)
Hexachlorobenzene	ug/kg	ND (370)	ND (410)	ND (420)	ND (380	ND (390)	ND (410)	ND (430) UI	ND (400)	ND (400)	ND (400)	ND (350)	ND (370)	50 J ND (400)	ND (430) ND (430)
Hexachlorobutadiene	ug/kg	ND (370)	ND (410)	ND (420)	ND (380	ND (390	ND (410	ND (430) UJ	ND (400)	ND (400)	ND (400)	ND (350)	ND (37()	ND (400)	ND (430)
Hexachlorocyclopentadiene	ug/kg	ND (1800)	ND (2000)	ND (2100)	ND (1800)	ND (1900)	ND (2000)	ND (2100) UJ	ND (1900)	ND (1900)	ND (190))	ND (170)	ND (180))	ND (2001)	ND (210))
Hexachloroethane Indenc(1.2,3-cd)pyrene	ug/kg ug/kg	ND (370) 99 J	ND (410) ND (410)	ND (420) ND (420)	ND (380) ND (380)	ND (390) ND (390)	ND (410	ND (430) UJ	ND (400)	ND (400)	ND (400)	ND (350)	ND (370)	ND (400)	ND (430)
Isophoone	ug/kg ug/kg	ND (370)	ND (410) ND (410)	ND (420) ND (420)	ND (380) ND (380)	ND (390) ND (390)	ND (410 ND (410	ND (430) UJ	ND (400)	ND (400)	ND (400)	ND (350)	ND (37t)	ND (400)	ND (430)
Naphthalene	ug/kg	ND (370)	ND (410)	ND (420)	ND (380	ND (390	ND (410 ND (410	ND (430) UJ ND (430) UI	ND (400) ND (400)	ND (400) ND (400)	ND (400) ND (400)	ND (350) ND (350)	ND (37() ND (37()	ND (400) 61 I	ND (430)
Nitrobenzene	ug/kg	ND (370)	ND (410)	ND (420)	ND (380)	ND (390	ND (410	ND (430) UJ	ND (400)	ND (400)	ND (400)	ND (350) ND (350)	ND (37() ND (37()	61 J ND (400)	ND (430) ND (430)
N-Nitrosodi-n-propylamine	ug/kg	ND (370)	ND (410)	ND (420)	ND (380)	ND (390	ND (410	ND (430) UJ	ND (400)	ND (400)	ND (400)	ND (350)	ND (370)	ND (400)	ND (430) ND (430)
N-Nitrosodiphenylamine Pentacklorophenol	ug/kg	ND (370)	ND (410)	ND (420)	ND (380)	ND (390)	ND (410	ND (430) UJ	ND (400)	ND (400)	ND (400)	ND (350)	ND (370)	ND (400)	ND (430)
Pentackiorophenol Phenarthrene	ug/kg	ND (370) 360 [ND (410)	ND (420)	ND (380)	ND (390)	ND (410)	ND (430) UJ	ND (400	ND (400)	ND (400)	ND (350)	ND (370)	ND (400)	ND (430)
Phenol	ug/kg ug/kg	360 J ND (370)	75 J 1100	ND (420) 76 J	ND (380) ND (380)	ND (390) ND (390)	ND (410) ND (410)	ND (430) UJ	ND (400	ND (400	ND (400)	ND (350)	ND (370)	99 J	ND (430)
Pyrene	ug/kg ug/kg	340 J	ND (410)	ND (420)	ND (380)	ND (390)	ND (410) ND (410)	ND (430) UJ ND (430) UJ	ND (400) ND (400)	ND (400) ND (400)	ND (400) ND (400)	ND (350)	ND (370)	ND (400)	ND (430)
		•	, .		\/	()	(220,	(200) 0)	140 (400)	IND (400)	MD (400)	ND (350)	ND (370)	27 J	ND (430)

TABLE 1

ANALYTICAL RESULTS SUMMARY RFI Work Plan Addendum No. 3 GM PCWERTRAIN - BEDFORD PLANT BEDFORD, IN

Sample Location: Sample ID:		B-X057Y272A S-040704-IC-044	B-X057Y272A S-040704-IC-045	B-X057Y272A S-040704-IC-046	B-X082Y116A S-040504-JC-035	B-X082Y136A S-040504-IC-036	B-X082Y136A S-040504-IC-037	B-X082Y136A S-040504-IC-038	B-X089\258	B-X089Y158	B-X089Y258	B-X095Y206A	B-X095Y206A	B-X095Y206A	B-X095Y206A
Sample Date:		4/7/200÷	4/7/2001	4/7/2004	4/5/2004	4/5/2001	4/5/2001	4/5/2001	S-041304-JC-053 4/13/2014	S-041304-JC-054 4/13/2044	S-041304-JC-055	S-040604-JC-039	S-040604-JC-040	S-040604-JC-041	S-040604-JC-042
Sample Depth:		(0-2)	(6-8)	(26-28.4)	(0-2)	(0-2)	(6-8)	(32-34)	4/13/2004	4/13/20 4 4 (6-8)	4/13/2014 (6-8)	4/6/2001 (0-2)	4/6/2064	4/6/2061	4/6/2001
				((0.27	Duplica'e	(0-0)	(32-39)	(0-2)	(0-0)	(6-8) Duplicate	(0-2)	(6-8)	(18-20	(28-29.4)
	Units										Duplicae				
Metals															
	ng/kg	3280	10500	8690	40700	11200	13700	8300 J	1430	3200	5570	2910	5310	1570	9790
	ng/kg	0.29 J	ND (7.4) UJ	ND (7.7) UJ	ND (6.8) U	ND (7.1) U	ND (7.4)	ND (7.9)	ND (7.3) UJ	ND (7.3) UJ	ND (7.3) UJ	ND (6.3)	ND (6.8)	0.33 J	ND (15.7)
Arsenic	ng/kg	2.3	6.1	7.1	1.7	2.0	6.2	9.9	2.4	1.9	3.0	2.4	1.3	6.6	7.7
Bariun	ng/kg	42.2	61.2	78.6	31.8	7.3 J	66.0	101 J	12.4 J	39.4	42.3	8.1 J	6.2 J	5.5]	59.0
Beryllium	ng/kg	ND (0.55) U	ND (0.62) U	0.65	ND (0.57) U	ND (0.59) U	ND (0.62; U	1.8 J	ND (0.61 U	ND (0.61) U	ND (0.60) U	ND (0.53)	ND (0.5?)	ND (0.6:)	1.6
Cadmium	mg/kg	0.58	0.57 J	0.55 J	0.52 J	0.18 J	0.13 J	1.2	ND (0.61) U	ND (0.61) U	0.72	0.031]	0.037	ND (0.6:)	0.43 J
Chromium Total	mg/kg	7.1 J	33.3 J	13.1 J	112	10.2	19.5	20.1 J	2.7]	5.7 J	8.9 J	6.1	7.5	4.5	17.7
Cobalt	ng/kg	3.1 J	12.9	11.8	29.2	1.8 J	3.2 J	15.0 j	2.1 J	2.7 J	2.5 J	2.1 j	1.9 [1.8 [21.2
Coppe:	ng/kg	45.0 J	62.9 J	19.0 J	1360	371	12.9	16.1 J	24.7 J	6.4 J	6.9 J	42.2	146	234	15.1
Cyanice (amenable)	ng/kg	ND (0.55)	ND (0.62)	ND (0.64)	ND (0.57)	ND (0.59)	ND (0.62)	0.22 J	ND (0.61)	ND (0.6:)	ND (0.60)	ND (0.53)	ND (0.57)	ND (0.6;)	ND (0.65)
Cyanice (total)	ng/kg	ND (0.55)	ND (0.62)	ND (0.64)	ND (0.57)	ND (0.59)	ND (0.62)	0.22 J	ND (0.61)	ND (0.61)	ND (0.60)	ND (0.53)	ND (0.57)	ND (0.6:)	ND (0.65)
Iron	ng/kg	6420	18900	16500	2950	4300	20700	38900)	3340	6370	8850	2580	2950	3040	19800
	ng/kg	24.0	23.7	29.7	57.6	11.1	10.7	13.6 J	5.2	5.0	5.3	16.0 J	6.7	13.6	16.4
Manganese	ng/kg	146 J	204 J	865 J	103	69.0	95.1	628 J	135	94.2	126	29.2	45.6	40.2	422
Mercury	ng/kg	0.012 }	1.2	0.061 J	0.63	ND (0.12) U	0.076 J	0.10]	ND (0.12)	0.00891	0.0301	0.0951	ND (0.1:)	0.019	0.041
Nickel	ng/kg	8.5	55.1	13.1	389	17.9	7.8	35.7 [7.0	9.0	13.4	11.9	12.2	9.5	42.0
Sclenium	ng/kg	ND (0.55	ND (0.62)	ND (0.64)	ND (0.57)	ND (0.59)	ND (0.62)	ND (0.66)	ND (0.61)	ND (0.61)	ND (0.60)	ND (0.53)	ND (0.57)	ND (0.6:)	ND (1.3)
Silver	ng/kg	ND (1.1)	ND (1.2)	ND (1.3)	0.28 J	ND (1.2)	ND (1.2)	ND (1.3)	ND (1.2	ND (1.2)	ND (1.2)	ND (1.1)	ND (1.1)	ND (1.2)	ND (2.6)
Thallium	ng/kg	ND (1.1)	ND (1.2)	ND (1.3)	ND (1.1) U	ND (1.2)	ND (1.2) U	ND (1.3)	ND (1.2	ND (1.2)	ND (1.2	0.53 [0.591	0.72 J	1.51
Vanadium	ng/kg	8.8	33.5	21.5	9.9	6.6	31.2	27.6 J	3.9]	4.1 [9.2	3.9]	4.2 J	4.6]	23.5
Zinc	ng/kg	47.7	58.9	73.2	193	50.5	28.6	121 J	21.7	20.0	25.4	21.0 [26.01	20.9 [99.1 I
PCBs												,	,	,	,
Aroclo:-1016 (PCB-1016)	ug/kg	ND (730)	ND (4100)	ND (42)	ND (75)	ND (39)	ND (41) UJ	ND (43) UI	ND (40)	ND (40'	ND (40)	ND (35)	ND (37) UJ	ND (40) UJ	ND (43) UJ
Aroclo-1221 (PCB-1221)	ug/kg	ND (730)	ND (4100)	ND (42)	ND (75)	ND (39)	ND (41) U	ND (43) UJ	ND (40)	ND (40	ND (40)	ND (35)	ND (37) UI	ND (40) UJ	ND (43) UJ
Aroclo:-1232 (PCB-1232)	ug/kg	ND (730)	ND (4100)	ND (42)	ND (75)	ND (39)	ND (41) JJ	ND (43) UJ	ND (40)	ND (40)	ND (40)	ND (35)	ND (37) UJ	ND (40) UJ	ND (43) UJ
Aroclo-1242 (PCB-1242)	ug/kg	ND (730)	13000	ND (42)	ND (75)	ND (39)	ND (41) JJ	ND (43) JJ	ND (40)	ND (40)	ND (40)	ND (35)	ND (37) UJ	ND (40) UJ	ND (43) UJ
Aroclo:-1248 (PCB-1248)	ug/kg	6000	ND (4100)	26 J	950	ND (39)	ND (41) JJ	ND (43) JJ	ND (40)	ND (40)	ND (40)	ND (35)	ND (37) UI	ND (40) UJ	ND (43) UJ
Aroclo:-1254 (PCB-1254)	ug/kg	ND (730)	ND (4100)	ND (42)	ND (75)	ND (39)	ND (41)	ND (43)	ND (40)	ND (40)	ND (40)	86	ND (37)	ND (40)	
Aroclo-1260 (PCB-1260)	ug/kg	740	ND (4100)	ND (42)	240	ND (39)	ND (41)	ND (43)	ND (40)	ND (40)	ND (40)	ND (35)	ND (37)	ND (40	ND (43) ND (43)
General Chemistry											, ,	(ę,	((20)
Total Solids	94,	90.2	81.1	77.7	88.0	85.0	80.6	76.2	82.3	82.6	82.7	95.2	88.2	81.5	76.6

TABLE 1

ANALYTICAL RESULTS SUMMARY RFI Work Plan Addendum No. 3 GM FOWERTRAIN - BEDFORD PLANT BEDFORD, IN

March Marc	Sample Location: Sample ID:		B-X095Y;06A S-040604- C-043	B-X1021258 S-041304-jC-056	B-X1021258 S-041304-[C-057	B-X108Y226A S-040204-jC-031	B-X108Y126A S-040204-'C-032	B-X108Y226A S-040204-'C-033	B-X108Y226A	B-X114'258	B-X114(258	B-X114/258	B-X1231245A	B-X123\245A	B-X123\245A	B-X12312454
Part									S-040204-'C-034	S-041304-'C-058	S-041304-IC-059	S-041304-FC-060	S-040104-IC-027	S-040104-JC-028	S-040104-JC-029	S-040104-FC-030
Columb C																
				10 27	(0-0)	(0-2)	(0-0,	(23-24)	(27.5-29.5)	(0-2,	(6-8)	(8-10)	(0-2)	(6-8)	(10-12)	(32-344)
1.3-3-54-Morefules		Units	,													
1.5 1.5	Volatiles															
1.5 1.5																
13.5 13.5		ug/kg		ND (7.4)	ND (5.1)	ND (5.0)	ND (5.1)	ND (5.1)	ND (6.))	ND (5.1)	ND (55)	ND (61)	ND (48)	ND (64)	ND (66)	ND (51)
13-15-16-interference 14/6					ND (5.1)	ND (5.0)	ND (5.i)	ND (5.1)	ND (6.))	ND (5.1)	ND (55)				. ,	
1-1						ND (5.0)	ND (5.0)	ND (5.1)	ND (6.))	ND (5.1)	ND (55)	ND (61)				
1.5 1.5						ND (5.4)	ND (5.0)	ND (5.1)	ND (6.1)	ND (5.1)	ND (5.5)	ND (61)				
1.5 1.5							ND (5.0)	ND (5.1)	ND (6.1)	ND (5.4)	ND (55)	ND (61)	ND (45)			
1-1-									ND (6.1)	ND (5.4)	ND (5.5)	ND (61)	ND (43)	ND (64)	ND (66)	
1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-										ND (1:)	ND (11)	ND (12)	ND (95)	ND (13)	ND (13)	
1-1- 1-1-										ND (5.1)	ND (5.5)	ND (61)	ND (4.3)	ND (64)	ND (66)	ND (5.1)
1-1- 1-1-											ND (5.5)	ND (61)	ND (43)	ND (64)	ND (66)	ND (51)
1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-													ND (4.3)	ND (6.4)	ND (65)	ND (5.1)
															ND (65)	ND (51)
														ND (64)	ND (6.5)	ND (5.1)
No.				. ,					. ,					, -,		ND (5.1)
Mode							. ,		٠,,							ND (20)
No.																
Process							. ,									ND (20)
Part					. ,											
Post-off-control Mark Ma	Bromedichloromethane								, ,			. ,				
March Marc								, ,								
Carbon Intellidate	Bromemethane (Methyl Bromide)					. ,										
California Sept Mile M				, ,												
Chlorestrame							, ,									
Chiorisent sg/kg ND (6.2 ND 7.0 ND (5.1) ND (5.0 ND (5.1) ND (5.1) ND (5.0 ND (5.1) ND (Chlombenzene															
Chioment (Trichloromenthane)	Chloriethane				, ,		, ,									
Second Content	Chloroform (Trichloromethine)									, ,						
	Chlommethane (Methyl Choride)												. ,			
18	cis-1,2 Dichloroethene				, ,		. ,									
Section Sect	cis-1,3-Dichloropropene				٠,											
Dicharochloromethane 1g/kg ND (6.2 ND (7.0 ND (5.1) ND (5.0 ND (5.0 ND (5.1) ND (5.1) ND (5.0 ND (5.1) N	Cyclonexane		ND (12					, ,								
Ehyllenzene	Dibronochloromethane		ND (6.2)									, ,				
Ebyle Rezerve	Dichlorodifluoromethane (CFC-12)		ND (6.2)								, ,					
Insert page	Ethyltenzene	ıg/kg	ND (6.2)	ND (7.0)	ND (5.1)	ND (5.0)										
Methyl speciales 1g/kg ND (12 17 ND (10	Isopropylbenzene	ıg/kg	ND (6.2)	ND (7.0)	ND (5.1)			,								
Methyl cyclohexane	Methyl acetate	1g/kg	ND (12)	17	ND (10)	ND (10)	ND (9.9)					, ,				
Methyleret Budyl Ether 126/kg ND (25 ND (28 ND (20) ND (20) U) ND (20) U ND (20) U) ND (20) U ND (20) U) ND (2	Methyl cyclohexane	ag/kg	ND (12)	ND (14	ND (10)	ND (10)	ND (9.5)	1.81								
Methylene chloride	Mcthyl Tert Butyl Ether	1g/kg	ND (25)	ND (28	ND (20)	ND (20) UJ	ND (20) UJ	ND (20) UI								
Sprace $1z/kg$ ND (6.2 ND (7.0 ND (5.1) ND (5.0 ND (5	Methylene chloride	1g/kg	ND (6.2) U	ND (7.0)	ND (5.1)	ND (5.0)		ND (5.1)								
Tethasilorerethene \$\frac{1}{16}\text{M}\$ \ ND (6.2 \ ND (7.0 \ ND (5.1) \ ND (5.1) \ ND (5.0 \		ıg/kg	ND (6.2	ND (7.0)	ND (5.1)	ND (5.0)	ND (5.0)					. ,				
Toliage \$ \qquad \qquad \qquad \qquad \qqqq \qqqqq \qqqq \qqqqq \qqqqq \qqqq \qqqqq \qqqqqq	Tetrachloroethene	1g/kg	ND (6.2	ND (7.0)	ND (5.1)	ND (5.0)	ND (5.0)	ND (5.1)	ND (6.0)		, ,					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1g/kg			ND (5.1)	ND (5.0)	ND (5.0)									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		ıg/kg		ND (3.5)	ND (2.5)	ND (2.5)	ND (2.5)	ND (2.5)	ND (3.0)	ND (2.7)			. ,			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					ND (5.1)	ND (5.0)	ND (5.0)									
Trikhbrofitsoromethane (CFC-11)		ug/kg		ND (7.0)	ND (5.1)	ND (5.0)	ND (5.0)	ND (5.1)	ND (6.0)	ND (5.4)					. ,	
Trilliprotrichloreethane (Fron 113) 1g/kg ND (6.2, ND (7.0, ND (5.1) ND (5.0) ND (5.0, ND (5.1) ND (6.0, ND (5.1) ND (5.1) ND (6.1) ND (5.1) ND (6.1) ND (6.							ND (5.0)	ND (5.1)	ND (6.0)							
Vinyl-khoride ug/kg ND (5.2 ND (7.0 ND (5.1) ND (5.0 ND (5.1) ND (6.0 ND (5.1) ND (6.1) ND (6.1) ND (6.4) ND (6.1) ND (6.4) ND (6.1) ND (6						ND (5.0)	ND (5.0)	ND (5.1)	ND (6.0)	ND (5.4)				. ,		
	· · ·						ND (5.0)	ND (5.1)	ND (6.0)	ND (5.4)	ND (5.5)	ND (6.1)		. ,		
	Aylens (total)	ug/kg	ND (6.2)	ND (7.0	ND (5.1)	ND (5.0)	ND (5.0)	ND (5.1)	ND (6.0)	ND (5.4)	ND (5.5)	ND (6.1)	ND (4.8)	ND (6.4)	ND (6.4)	

TABLE1

ANALYTICAL RESULTS SUMMARY RFI Work Plan Adcendum No. 3 GM POWERTRAIN - BEDFORD PLANT BEDFORD, IN

Sample Location: Sample ID:		B-X095Y2)6A	B-X102Y258	B-X102Y258	B-X108Y226A	B-X108Y226A	B-X108Y226A	B-X108Y226A	B-X114Y258	B-X114Y258	B-X114Y258	B-X123Y:45A	B-X123Y:45A	B-X123Y:45A	B-X123Y245A
Sample ID: Sample Date:		S-040604-JC-043 4/6/2001	S-041304-JC-056 4/13/2004	S-041304-JC-057 4/13/2004	S-040204-JC-031	S-040204-JC-032	S-040204-JC-033	S-040204-JC-034	S-041304-JC-058	S-041304-JC-059	S-041304-JC-060	S-040104-JC-027	S-040104-JC-028	S-040104-JC-029	S-040104-JC-030
Sample Depth:		(28-29.4)	4/13/2014	4/13/2004 (6-8)	4/2/2004 (0-2)	4/2/2004 (6-8)	4/2/2001 (23-24)	4/2/2064	4/13/2004	4/13/20)4	4/13/2014	4/1/20(4	4/1/2004	4/1/2014	4/1/2004
		Duplicate	10 20	10 0)	(0-2)	(0-5)	(23-24	(27.5-295)	(0-2)	(6-8)	(8-10,	(0-2)	(6-8)	(10-12)	(32-34.1)
	Units														
Semi-/olatiles															
2,2'-oxybis(1-Chloropropane) (bis(2-chloroisopropyl) ether)	ug/kg	ND (450)	ND (430)	ND (410)	ND (370)	ND (400)	ND (410)	ND (460)	ND (370)	ND (421)	ND (440)	ND (420)			
2,4,5-Trichlorophenol	ug/kg	ND (450)	ND (430)	ND (410)	ND (370)	ND (400)	ND (410)	ND (460)	ND (370)	ND (421)	ND (440) ND (440)	ND (424) ND (424)	ND (430) ND (430)	ND (431) ND (431)	ND (410) ND (410)
2,4,6-Trichlorophenol	цg/kg	ND (450)	ND (430)	ND (410)	ND (370)	ND (400)	ND (410)	ND (460)	ND (370)	ND (420)	ND (444)	ND (421)	ND (430)	ND (430)	ND (410) ND (410)
2,4-Dincthylphenol	ug/kg	ND (450)	ND (430)	ND (410)	ND (370)	ND (400)	ND (410)	ND (460)	ND (370)	ND (420)	ND (444)	ND (420)	ND (430)	ND (43))	ND (410)
2,4-Dinitrophenol	ug/kg ug/kg	ND (450) ND (2200)	ND (430) ND (2101)	ND (410)	ND (370)	ND (400)	ND (410)	ND (460)	ND (37i)	ND (420)	ND (441)	ND (420)	ND (430)	ND (430)	ND (410)
2,4-Disitrotoluene	ug/kg ug/kg	ND (450)	ND (430)	ND (2000) ND (410)	ND (1804) ND (370)	ND (2000) ND (400)	ND (200)) ND (41()	ND (220)	ND (180)	ND (2000)	ND (2100)	ND (200)	ND (210)	ND (2100)	ND (2000)
2,6-Dinitrotoluene	ug/kg	ND (450)	ND (430)	ND (410)	ND (370)	ND (400)	ND (410)	ND (460) ND (460)	ND (370) ND (370)	ND (420) ND (420)	ND (444) ND (444)	ND (420) ND (420)	ND (434)	ND (430)	ND (410)
2-Chloronaphthalene	ng/kg	ND (450)	ND (430)	ND (410)	ND (370)	ND (400)	ND (410)	ND (460)	ND (37()	ND (420)	ND (440)	ND (420) ND (420)	ND (434) ND (434)	ND (430) ND (430)	ND (414) ND (414)
2-Chlorophenol	ug/kg	ND (450)	ND (430)	ND (410)	ND (370)	ND (400)	ND (410)	ND (46()	ND (37t)	ND (420)	ND (440)	ND (420)	ND (430)	ND (430)	ND (410)
2-Methylmaphthalene 2-Methylphenol	ıg/kg	ND (450) ND (450)	ND (430)	ND (410)	ND (370)	ND (400)	ND (410)	ND (46()	ND (370)	ND (420)	ND (440)	ND (420)	ND (430)	35 J	ND (410)
2-Nitreaniline	ug/kg ug/kg	ND (450) ND (2200)	ND (430) ND (2100)	ND (410) ND (2000)	ND (370) ND (1800)	ND (400)	ND (410)	ND (460)	ND (370)	ND (420)	ND (440)	ND (420)	ND (430)	ND (434)	ND (410)
2-Nitrophenol	ig/kg	ND (450)	ND (430)	ND (410)	ND (1800) ND (370)	ND (2001) ND (400)	ND (2001) ND (410)	ND (220)) ND (460)	ND (180)) ND (37()	ND (200) ND (420)	ND (2100) ND (440)	ND (2000)	ND (2100)	ND (210)	ND (2000)
3,3'-Dichlorobenzidine	*g/kg	ND (2200)	ND (2100)	ND (2000)	ND (1800)	ND (2004)	ND (2000)	ND (220))	ND (180))	ND (420) ND (200)	ND (440) ND (210)	ND (420) ND (200)	ND (430) ND (2100)	ND (434) ND (210)	ND (410) ND (2000)
3-Nitroaniline	ug/kg	ND (220()	ND (2100)	ND (2000)	ND (1800)	ND (2004)	ND (2000)	ND (220))	ND (180))	ND (200)	ND (210)	ND (200)	ND (2100)	ND (210)	ND (200)
4,6-Dinitro-2-methylphenol	ug/kg	ND (2200)	ND (2100)	ND (2000)	ND (1800)	ND (2000)	ND (2004)	ND (2200)	ND (1801)	ND (200))	ND (210)	ND (200))	ND (2100)	ND (210)	ND (2000)
4-Bronophenyl phenyl ether 4-Chloro-3-methylphenol	ug/kg ug/kg	ND (450 ND (450	ND (430) - ND (430)	ND (410) ND (410)	ND (370) ND (370)	ND (400) ND (400)	ND (410)	ND (460)	ND (37t)	ND (420)	ND (440)	ND (420)	ND (430)	ND (430)	ND (410)
4-Chloroaniline	ug/kg	ND (450	ND (430)	ND (410)	ND (370)	ND (400)	ND (410) ND (410)	ND (460) ND (460)	ND (370) ND (370)	ND (420) ND (420)	ND (440)	ND (420)	ND (430)	ND (430)	ND (410)
4-Chlorophenyl phenyl ether	ug/kg	ND (450	ND (430	ND (410)	ND (370)	ND (400)	ND (410)	ND (460)	ND (370)	ND (420) ND (420)	ND (44() ND (44()	ND (42() ND (42()	ND (430) ND (430)	18 J ND (430)	ND (410)
4-Methylphenol	ug/kg	ND (450	ND (430	ND (410)	ND (370)	ND (400)	ND (410)	ND (460)	ND (370)	ND (420)	ND (440)	ND (420)	ND (43()	ND (430)	ND (410) ND (410)
4-Nitraniline	ug/kg	ND (2200)	ND (2100)	ND (2000)	ND (180K)	ND (2000)	ND (2001)	ND (2200)	ND (1804)	ND (200)	ND (210))	ND (200))	ND (210))	ND (210)	ND (200)
4-Nitrophenol Accomplishene	ug/kg	ND (2200)	ND (2100)	ND (2000)	ND (1800)	ND (2000)	ND (2000)	ND (2200)	ND (1800)	ND (200))	ND (210))	ND (2001)	ND (210))	ND (2100)	ND (200)
Acenaphthylene	ug/kg ug/kg	ND (450) ND (450)	ND (430 ND (430	ND (410) ND (410)	ND (370 ND (370	ND (400) ND (400)	ND (410) ND (410)	ND (460)	ND (370)	ND (420)	ND (440)	ND (420)	ND (430)	ND (430)	ND (414)
Acetophenone	ug/kg	ND (450)	ND (430)	ND (410)	ND (370	ND (400)	ND (410) ND (410)	ND (460) ND (460)	ND (370) ND (370)	ND (420) ND (420)	ND (440)	ND (420)	ND (430)	ND (430)	ND (410)
Anthrscene	ιg/kg	ND (450)	ND (430)	ND (410)	ND (370	ND (400	ND (410)	ND (460)	ND (370)	ND (420)	ND (440) ND (440)	ND (420) ND (420)	ND (430) ND (430)	24 J ND (430)	ND (410) ND (410)
Atrazine	ιg/kg	ND (450)	ND (430)	ND (410)	ND (370)	ND (400	ND (410)	ND (460)	ND (370)	ND (420)	ND (440)	ND (420)	ND (430)	ND (43()	ND (410)
Benzaliehyde Benzo(s)anthracene	ιg/kg	ND (450)	R	R	ND (370)	ND (400)	ND (410)	ND (460)	95 J	R	R	ND (420)	ND (430)	ND (43()	ND (410)
Benzo(s)pyrene	ιg/kg ιg/kg	ND (450) ND (450)	170 J 220 J	ND (410) ND (410)	ND (370) ND (370)	ND (400) ND (400)	ND (410) ND (410)	ND (460)	ND (370)	ND (420)	ND (440)	23 J	25 J	ND (43()	ND (410)
Benzo(s)fluoranthene	tg/kg	ND (450)	280 I	ND (410)	ND (370	ND (400 ND (400	ND (410) ND (410)	ND (460) ND (460)	63 J 65 J	ND (420) ND (420)	ND (440)	23 J	ND (430)	ND (430)	ND (410)
Benzo(g,h,i)perylene	ug/kg	ND (450)	120 J	ND (410)	ND (370)	ND (400)	ND (410)	ND (460)	69 I	ND (420) ND (420)	ND (440) ND (440)	29 J 31 J	19 J ND (430)	ND (430) UJ ND (430)	ND (410) ND (410)
Benzo(k)fluoranthene	ug/kg	ND (450)	90 J	ND (410)	ND (370)	ND (400	ND (410	ND (460)	ND (370)	ND (420)	ND (440)	ND (420)	ND (430) UJ	ND (430) UJ	ND (410)
Bipheryl	ιg/kg	ND (450)	ND (430)	ND (410)	ND (370)	ND (400)	ND (410	ND (460)	190 J	ND (420)	ND (440)	ND (420)	ND (430)	25 J	ND (410)
bis(2-Chloroethoxy)methane bis(2-Chloroethyl)ether	ug/kg ug/kg	ND (450) ND (450)	ND (430) ND (430)	ND (410) ND (410)	ND (370) ND (370)	ND (400)	ND (410	ND (460)	ND (370)	ND (420)	ND (440)	ND (420)	ND (430)	ND (430)	ND (410)
bis(2-Ehylhexyl)phthalate	ug/kg ug/kg	ND (450) U	ND (430)	ND (410)	ND (370) ND (370)	ND (400) ND (400)	ND (410) 20 I	ND (460) ND (460)	ND (370) 330 J	ND (420) ND (420)	ND (440)	ND (420)	ND (430)	ND (430)	ND (410)
Butyl benzylphthalate	ug/kg	ND (450)	ND (430)	ND (410)	ND (370)	ND (400)	ND (410	ND (460)	ND (370)	ND (420) ND (420)	ND (440) ND (440)	26 J ND (420)	21 J ND (430)	28 J ND (430)	27]
Caprolectam	ug/kg	ND (450)	ND (430)	ND (410)	ND (370)	ND (400)	ND (410	ND (460)	ND (370)	ND (420)	ND (440)	ND (420)	ND (430)	ND (430)	ND (410) ND (410)
Carbazole	ug/kg	ND (450)	ND (430)	ND (410)	ND (370)	ND (400)	ND (410	ND (460	ND (370)	ND (420)	ND (440)	ND (420)	ND (430)	ND (430)	ND (410)
Chryseac Dibenz'a,h)anthracene	ug/kg	ND (450)	170 J	ND (410)	ND (370)	ND (400)	ND (410	ND (460	ND (370)	ND (420)	ND (440)	25 J	31 J	ND (430)	ND (410)
Dibenzian	ug/kg ug/kg	ND (450) ND (450)	ND (430) ND (430)	ND (410) ND (410)	ND (370) ND (370)	ND (400) ND (400)	ND (410 ND (410	ND (460) ND (460)	ND (370)	ND (420)	ND (440)	ND (420)	ND (430)	ND (430)	ND (410)
Diethyl phthalate	ug/kg	ND (450)	ND (430)	ND (410)	ND (370)	ND (400)	ND (410	ND (460)	ND (370) ND (370)	ND (420) ND (420)	ND (440) ND (440)	ND (420)	ND (430)	ND (430)	ND (410)
Dimethyl phthalate	ug/kg	ND (450)	ND (430)	ND (410)	ND (370)	ND (400)	ND (410	ND (460	ND (370	ND (420)	ND (440)	ND (420) ND (420)	ND (430) ND (430)	ND (430) ND (430)	ND (410) ND (410)
Di-n-butylphthalate	ug/kg	ND (450)	ND (430)	ND (410)	ND (370)	ND (400)	ND (410	ND (460	82 J	ND (420)	ND (440)	ND (420)	ND (430)	ND (430)	ND (410)
Di-n-odyl phthalate Fluorarthene	ug/kg	ND (450)	ND (430)	ND (410)	ND (370)	ND (400)	ND (410)	ND (460)	ND (370	ND (420)	ND (440)	ND (420)	ND (430)	ND (430)	ND (410)
Fluorere	ug/kg	ND (450) ND (450)	330 J ND (430)	ND (410)	ND (370)	ND (400)	ND (410)	ND (460)	ND (370	ND (420	ND (440)	37 J	29 J	ND (430)	ND (410)
Hexachlorobenzene	ug/kg ug/kg	ND (450)	ND (430)	ND (410) ND (410)	ND (370) ND (370)	ND (400) ND (400)	ND (410) ND (410)	ND (460) ND (460)	ND (370 ND (370	ND (420) ND (420)	ND (440) ND (440)	ND (420)	ND (430)	ND (430)	ND (410)
Hexachorobutadiene	ug/kg	ND (450)	ND (430)	ND (410)	ND (370)	ND (400)	ND (410)	ND (460)	ND (370	ND (420)	ND (440) ND (440)	ND (420) ND (420)	ND (430) ND (430)	ND (430) ND (430)	ND (410) ND (410)
Hexachlorocyclopentadiene	ug/kg	ND (2200	ND (2100	ND (2000)	ND (1800)	ND (2000)	ND (2000)	ND (2200)	ND (1800)	ND (2000)	ND (2100)	ND (2000)	ND (430) ND (2100)	ND (430) ND (210))	ND (410) ND (2000)
Hexachtoroethane	ug/kg	ND (450)	ND (430)	ND (410)	ND (370)	ND (400)	ND (410)	ND (460)	ND (370	ND (420	ND (440)	ND (420	ND (430)	ND (430)	ND (410)
Indenoil,2,3-cd)pyrene Isophowne	ug/kg ug/kg	ND (450) ND (450)	110 J ND (430)	ND (410) ND (410)	ND (370) ND (370)	ND (400) ND (400)	ND (410)	ND (460)	ND (370)	ND (420	ND (440)	ND (420	ND (430)	ND (430)	ND (410)
Naphthalene	ug/kg ug/kg	ND (450) ND (450)	ND (430) ND (430)	ND (410) ND (410)	ND (370) ND (370)	ND (400) ND (400)	ND (410) ND (410)	ND (460) ND (460)	ND (370) ND (370)	ND (420 ND (420	ND (440	ND (420	ND (430)	ND (430)	ND (410)
Nitrobenzene	ug/kg	ND (450)	ND (430)	ND (410)	ND (370)	ND (400)	ND (410)	ND (460)	ND (370	ND (420)	ND (440) ND (440)	ND (420 ND (420	ND (430) ND (430)	31 J ND (430)	ND (410) ND (410)
N-Nitrosdi-n-propylamine	ug/kg	ND (450)	ND (430)	ND (410)	ND (370)	ND (400)	ND (410)	ND (460)	ND (370)	ND (420	ND (440	ND (420	ND (430)	ND (430) ND (430)	ND (410) ND (410)
N-Nitrosodiphenylamine	ug/kg	ND (450)	ND (430)	ND (410)	ND (370)	ND (400)	ND (410)	ND (460)	ND (370)	ND (420	ND (440	ND (420	ND (430)	ND (430)	ND (410)
Pentachlorophenol Phononhrene	uz/kg	ND (450) ND (450)	ND (430) ND (430)	ND (410)	ND (370)	ND (400)	ND (410)	ND (460)	ND (370)	ND (420)	ND (440	ND (420	ND (430	ND (430)	ND (410)
Phenol	uţ/kg uţ/kg	ND (450) ND (450)	ND (430) ND (430)	ND (410) ND (410)	ND (370) ND (370)	ND (400) ND (400)	ND (410) ND (410)	ND (460) ND (460)	68 J	ND (420)	ND (440	ND (420	ND (430	49 J	ND (410)
Pyrene	ug/kg	ND (450)	320 J	ND (410)	ND (370)	ND (400) ND (400)	ND (410) 21 J	ND (460) ND (460)	ND (370) ND (370)	ND (420) ND (420)	ND (440) ND (440)	ND (420)	ND (430	ND (430)	ND (410
	-		•			, :==/	,	(.00)	(0/0)	140 (420,	140 (440)	34 J	25 J	ND (430	ND (410

TABLE1

ANALYTICAL RESULTS SUMMARY RH Work Plan Adcendum No. 3 GM POWERTRAIN - BEDFORD PLANT BEDFORD, IN

Samp'e Location:	B-X	X095Y2)6A	B-X102Y:58	B-X102Y258	B-X108Y226A	B-X108Y226A	B-X108Y226A	B-X108Y226A	B-X114Y258	B-X114Y258	B-X114\258	B-X123Y:45A	B-X123Y;45A	B-X123Y:45A	B-X123Y145A
Sample ID:	S-040	10604-JC-043	S-041304-JC-056	S-041304-JC-057	S-040204-JC-031	S-040204-JC-032	S-040204-JC-033	S-040204-IC-034	S-041304-JC-058	S-041304-1C-059	S-041304-JC-060	S-040104-JC-027	S-040104-IC-028	S-040104-JC-029	S-040104-IC-030
Samp'e Date:	4	4/6/2001	4/13/2014	4/13/2004	4/2/2004	4/2/2004	4/2/2064	4/2/2004	4/13/2014	4/13/2014	4/13/20)4	4/1/2014	4/1/2014	4/1/2014	4/1/2014
Samp'e Depth:	((28-29.4)	(0-2)	(6-8)	(0-2)	(6-8)	(23-24)	(27.5-295)	(0-2)	(6-8)	(8-10,	(0-2)	(6-8)	(10-12)	(32-34.1)
	D	Duplicate									1	(0.2)	(0 0)	(10-12)	(32-34.9)
	rits														
Metak															
		10400	7240	14600	7470	9020	3610	9420	7070	13800	19300	7140	15000	715	9880
	-	VD (16.3)	ND (7.7) UJ	ND (7.5) UJ	ND (6.8) U	ND (7.3)	ND (7.4)	ND (8.3)	ND (6.7) UJ	ND (7.6) UJ	ND (8.0) UJ	ND (7.6) UJ	ND (7.9) UJ	ND (7.8) UJ	ND (7.4) UJ
	/kg	9.3	7.3	14.4	7.6	4.9	2.7	10.4	1.2	9.6	13.1	3.6	11.9	0.55]	33.3
	/kg	63.1	1530	56.4	22.5 J	39.4	14.2 J	113	10.4 J	57.1	58.9	37.4	84.1	4.61	69.3
	/kg	1.9	ND (0.64) U	0.78	ND (0.56) U	ND (0.61) U	ND (0.62) U	2.5	ND (0.56) U	ND (0.63) U	ND (0.67) U	ND (0.64) U	0.61 1	ND (0.65)	2.1
	/kg	0.46 J	1.2	ND (0.63)	0.18 J	0.20 J	0.13 J	0.54 J	ND (0.56) U	ND (0.63)	ND (0.67)	0.54 [0.69	ND (0.65) U	1.2
	/kg	19.8	41.8 J	36.1 J	44.4	13.8	19.5	16.5	101 J	26.2 J	36.71	13.8	28.6	20.7	82.4
Cobal:	/kg	24.2	9.5	5.1 J	6.3	4.1 J	3.9 J	17.7	6.1	3.8 [5.4 I	4.6 [6.6	26.3	16.6
Copper	/kg	18.4	37.7 J	13.4 J	10.5	16.6	69.7	22.1	64.4 J	11.9 [16.71	92.4	20.8	10	17.4
	/kg N	ID (0.68)	ND (0.64)	ND (0.63)	ND (0.56)	ND (0.61)	ND (0.62)	ND (0.69)	ND (0.54)	ND (0.63)	ND (0.67)	ND (0.64)	ND (0.6)	ND (0.65)	ND (0.61)
Cyanile (total) ng	/kg N	ID (0.68)	ND (0.64)	ND (0.63)	ND (0.56)	ND (0.61)	ND (0.62)	ND (0.69)	ND (0.5i)	ND (0.63)	ND (0.67)	0.23	ND (0.6i)	ND (0.65)	ND (0.62)
Iron ng.	/kg	24300	34200	38100	23300	14700	4400	24500	3630	25200	37300	10000	37800	549	42900
Lead ng.	/kg	17.8	1340	18.7	12.1	15.6	6.7	20.7	38.3	14.9	17.0	15.7	18.0	5.7	30.1
Manganese ng.	/kg	477	572	278	130	93.4	101	653	95.4	143	117	146 [177 J	33.2	224 J
Mercury ng.	/kg	0.044 J	1.6	0.11 [0.044 i	0.050 [ND (0.12 U	0.17	104	1.4	0.11 [0.16	0.053	0.53	0.10 [
Nickel ng.	/kg	54.0	23.5	11.1	13.7	7.0	45.5	77.1	464	11.6	16.0	17.5	13.8	36.3	
Selenium ng.	/kg N	ND (1.4)	0.45 [0.58 I	ND (0.5()	ND (0.61)	ND (0.62)	ND (0.69)	0.37 [0.361	0.66 [ND (0.64)	ND (1.0) U	ND (0.65)	30.2
Silver ng,	/kg N	ND (2.7)	ND (1.3)	ND (1.3)	ND (1.1	ND (1.2	ND (1.2)	ND (1.4)	0.42 j	ND (1.3)	ND (1.3)	ND (1.3)	ND (1.3)	ND (0.6)	ND (0.76) U
Thellium ng.	/kg N	ND (2.7)	ND (1.3)	ND (1.3)	ND (1.1	ND (1.2	ND (1.2)	ND (1.4) U	ND (1.1)	ND (1.3)	ND (1.3)	ND (1.3) U	ND (1.5) U		ND (1.2)
Vanadum ng.	/kg	27.7	16.6	44.6	39.4	23.3	4.71	23.1	4.3 J	37.9	54.9	12.6	45.2	ND (1.3) U	ND (2.0) U
Zinc ng.	/kg	118 [1200	31.9	24.4	33.3	46.0	57.5	117	27.7	38.3	81.6	33.0	1.2 J 18.6	50.3
								07.0	***	47.7	36.3	01.0	33.0	18.6	118
PCBs															
Aroclar-1016 (PCB-1016) ug/	/kg NI	D (45) JJ	ND (43)	ND (41)	ND (37)	ND (40) UI	ND (41) UJ	ND (46) UJ	ND (37)	ND (42)	ND (44)	NID (42)	ND (40	NTD // 0	
Arocler-1221 (PCB-1221) ug/		D (45) JJ	ND (43)	ND (41)	ND (37)	ND (40) UJ	ND (41) UI	ND (46) UI	ND (37	ND (42)	ND (44)	ND (42) ND (42)	ND (43) ND (43)	ND (43)	ND (41)
Arockr-1232 (PCB-1232) ug/		D (45) JJ	ND (43)	ND (41)	ND (37)	ND (40) UJ	ND (41) UJ	ND (46) UJ	ND (37)	ND (42)	ND (44)	ND (42)	ND (43)	ND (43)	ND (41)
Aroclar-1242 (PCB-1242) ug/		D (45) JJ	ND (43)	ND (41)	ND (37)	ND (40) UJ	ND (41) UI	ND (46) UJ	ND (37)	ND (42)	ND (44)	ND (42)	,	ND (43)	ND (41)
Aroclar-1248 (PCB-1248) ug/		D (45) JI	ND (43)	ND (41)	ND (37)	ND (40) UJ	ND (41) UJ	ND (46) UJ	73	ND (42)	ND (44)		ND (43)	ND (43)	ND (41)
Aroclor-1254 (PCB-1254) ug/		VD (45)	ND (43)	ND (41)	ND (37)	ND (40)	ND (41)	ND (46)	ND (37)			220	230	ND (43)	ND (41)
Aroclar-1260 (PCB-1260)		VD (45)	ND (43)	ND (41)	ND (37)	ND (40)	ND (41)	ND (46)	130	ND (42 ND (42	ND (44)	ND (42)	ND (43)	ND (43)	ND (41)
. ,		,/	()	()	112 (01)	110 (10)	140 (11,	1415 (40)	130	ND (42)	ND (44)	45	36 J	31 J	ND (41)
General Chemistry															
Total Solids %	ń	73.8	77.6	79.7	88.6	81.7	80.9	72.2	89.3	79.5	74.8	78.7	76.0	76.7	·81.0

TABLE 1

ANALYTICAL RESULTS SUMMARY RII Work Plan Addendum No. 3 GM POWERTRAIN - BEDFORD PLANT BEDFORD, IN

Sample Location:		B-X129Y193	B-X129Y193	B-X129Y224	B-X1291224	B-X1291236	B-X1291236	B-X1291236	B-X1291247	B-X1291247	B-X132Y186B	B-X132Y186B	B-X132Y186B	B-X143\193B	B-X143\193B
Sample ID:		S-041404-JC-068	S-041404-JC-069	S-041404-JC-070	S-041404-JC-071	S-041404-JC-065	S-041404-)C-066	S-041404-jC-067	S-041404-jC-063	S-041404-jC-064	S-040804-/C-050	S-040804-C-051	S-040804-[C-052	S-040704-1C-047	S-040704-IC-048
Sample Date:		4/14/20)4	4/14/2014	4/14/2094	4/14/20)4	4/14/20)4	4/14/2004	4/14/2004	4/14/2004	4/14/2004	4/8/20)4	4/8/2014	4/8/20)4	4/7/20)4	4/7/2014
Sample Depth:		(0-2)	(4-6)	(0-2)	(6-8)	(0-2)	(6-8)	(6-8)	(0-2)	(6-8)	(0-2,	(6-8,	(38-409)	(0-2	(6-8)
	Units							Duplicate							
Valatiles	ums														
1,1,1-Trichloroethane	ug/kg	ND (5.4)	ND (5.5)	ND (5.7)	ND (5.3)	ND (5.3)	ND (6.2)	ND (5.4)	ND (6.6)	ND (5.1)	ND (230)	ND (4.3)	ND (7.1)	ND (43)	ND (4.7)
1,1,2,5-Tetrachlorocthane	ug/kg	ND (5.4)	ND (5.3)	ND (5.7)	ND (5.3)	ND (5.3)	ND (6.2)	ND (5.4)	ND (6.6)	ND (5.2)	ND (230)	ND (4.3)	ND (7.1)	ND (43) ND (43)	
1,1,2-Trichloroethane	ug/kg	ND (5.4)	ND (5.2)	ND (5.7)	ND (5.3)	ND (5.3)	ND (6.2)	ND (5.4)	ND (6.4)	ND (5.1)	ND (230)	ND (4.3)	ND (7.1)	ND (43)	ND (4.7) ND (4.7)
1,1-Dichloroethane	ug/kg	ND (5.4)	ND (5.3)	ND (5.7)	ND (5.3)	ND (5.3)	ND (6.2)	ND (5.4)	ND (6.4)	ND (5.1)	ND (230)	ND (4.3)	ND (7.1)	ND (43)	ND (47)
1,1-Dithloroethene	ug/kg	ND (5.4)	ND (5.3)	ND (5.7)	ND (5.3)	ND (5.3)	ND (6.2)	ND (5.4)	ND (6.4)	ND (5.1)	ND (230)	ND (4.3)	ND (7.1)	ND (4.3)	ND (4.7)
1,2,4-Trichlorobenzene	ug/kg	ND (5.4)	ND (5.3)	ND (5.7)	ND (5.3)	ND (5.3)	ND (6.1)	ND (5.4)	ND (6.4)	ND (5.1)	ND (230)	ND (4.8)	ND (7.1)	ND (4.3)	ND (4.7)
1,2-Diromo-3-chloropropane (DBCP)	ug/kg	ND (11)	ND (11)	ND (11)	ND (11)	ND (11)	ND (12)	ND (11)	ND (13)	ND (10)	ND (450)	ND (9.6)	ND (14)	ND (9.5)	ND (9.4)
1,2-Diromoethane (Ethylere Dibromide)	ug/kg	ND (5.4)	ND (5.3)	ND (5.7)	ND (5.3)	ND (5.2)	ND (6.2)	ND (5.4)	ND (6.6)	ND (5.2)	ND (230)	ND (4.8)	ND (7.1)	ND (4.3)	ND (4.7)
1.2-Dichlorobenzene	ug/kg	ND (5.4)	ND (5.3)	ND (5.7)	ND (5.3)	ND (5.2)	ND (6.2)	ND (5.4)	ND (6.6)	ND (5.2)	ND (230)	ND (4.8)	ND (7.1)	ND (4.3)	ND (4.7)
1,2-Dichloroethane	ug/kg	ND (5.4)	ND (5.3)	ND (5.7)	ND (5.3)	ND (5.3)	ND (6.1)	ND (5.4)	ND (6.6)	ND (5.2)	ND (23))	ND (4.8)	ND (7.1)	ND (4.3)	ND (4.7)
1,2-Dithloropropane	ug/kg	ND (5.4)	ND (5.3)	ND (5.7)	ND (5.3)	ND (5.3)	ND (6.2)	ND (5.4)	ND (6.6)	ND (5.2)	ND (23))	ND (4.1)	ND (7.1)	ND (4.3)	ND (4.7)
1,3-Dirhlorobenzene 1.4-Dirhlorobenzene	ug/kg	ND (5.4)	ND (5.3)	ND (5.7)	ND (5.3)	ND (5.2)	ND (6.3)	ND (5.4)	ND (6.6)	ND (5.2)	ND (231)	ND (4.1)	ND (7.:)	ND (4.3)	ND (4.7)
	ug/kg	ND (5.4)	ND (5.3)	ND (5.7)	ND (5.3)	ND (5.3)	ND (6.2)	ND (5.4)	ND (6.6)	ND (5.2)	ND (23))	ND (4.1)	ND (7.:)	ND (4.3)	ND (4.7)
2-But≀none (Methyl Ethyl K≥tone) 2-Hexanone	ag/kg	ND (22)	ND (21	ND (23)	ND (21)	ND (21)	ND (25)	ND (21)	ND (26)	ND (21)	ND (91))	ND (19)	ND (28)	ND (19)	2.3 J
4-Metryl-2-Pentanone (Methyl Isobutyl Ketone)	ug/kg	ND (22	ND (21	ND (23)	ND (21)	ND (21)	ND (25)	ND (21)	ND (26)	ND (21)	ND (91))	ND (19)	ND (28)	ND (19)	ND (19)
Acetone	ag/kg	ND (22) ND (22)	ND (21	ND (23)	ND (21)	ND (21)	ND (25)	ND (21)	ND (26)	ND (21)	ND (91))	ND (19)	ND (28)	ND (19)	ND (19)
Benzere	ıg/kg	ND (22)	ND (21	ND (23)	ND (21)	ND (21)	ND (25)	ND (21)	ND (26)	7.9 J	ND (91))	7.0 J	11 J	ND (19)	10 J
Bromedichloromethane	ag/kg ag/kg	ND (5.4)	ND (5.3) ND (5.3)	ND (5.7)	ND (5.3)	ND (5.3)	ND (6.2)	ND (5.4)	ND (6.4)	ND (5.2)	ND (23))	ND (4.8)	ND (7.:)	ND (4.1)	ND (4.*)
Bromeform	1g/kg	ND (5.4)	ND (5.3)	ND (5.7) ND (5.7)	ND (5.3) ND (5.3)	ND (5.3)	ND (6.2)	ND (5.4)	ND (6.6)	ND (5.1)	ND (23))	ND (4.8)	ND (7.:)	ND (4.1)	ND (4.7)
Bromomethane (Methyl Bronide)	1g/kg	ND (5.4)	ND (5.3)	ND (5.7)	ND (5.3)	ND (5.3) ND (5.3)	ND (6.2)	ND (5.4)	ND (6.¢)	ND (5.1)	ND (23))	ND (4.8)	ND (7.:)	ND (4.1)	ND (4.7)
Carbon disulfide	1g/kg	ND (5.4)	ND (5.3)	ND (5.7)	ND (5.3)	ND (5.3) ND (5.3)	ND (6.2)	ND (5.4)	ND (6.t)	ND (5.1)	ND (231)	ND (4.8)	ND (7.:)	ND (4.1)	ND (4.7)
Carbos tetrachloride	ıg/kg	ND (5.4)	ND (5.3)	ND (5.7)	ND (5.3)	ND (5.3)	ND (6.2) ND (6.2)	ND (5.4) ND (5.4)	ND (6.6) ND (6.6)	ND (5.2)	ND (23))	ND (4.8)	ND (7.1)	ND (4.1)	1.1 J
Chlombenzene	ıg/kg	ND (5.4)	ND (5.3)	ND (5.7)	ND (5.3)	ND (5.3)	ND (6.2)	ND (5.4)	ND (6.6)	ND (5.2) ND (5.2)	ND (230)	ND (4.8)	ND (7.1)	ND (4.1)	ND (4.7)
Chlorethane	ıg/kg	ND (5.4)	ND (5.3)	ND (5.7)	ND (5.3)	ND (5.3)	ND (6.2)	ND (5.4)	ND (6.6)	ND (5.2)	ND (230)	ND (4.8)	ND (7.1)	ND (4.1)	ND (4.7)
Chloroform (Trichloromethane)	ıg/kg	ND (5.4	ND (5.3)	ND (5.7)	ND (5.3)	ND (5.3)	ND (6.2)	ND (5.4)	ND (6.6)	ND (5.2)	ND (230) ND (230)	ND (4.8) ND (4.8)	ND (7.1) ND (7.1)	ND (4.1) ND (4.1)	ND (4.*)
Chloremethane (Methyl Chbride)	1g/kg	ND (5.4	ND (5.3	ND (5.7)	ND (5.3)	ND (5.3)	ND (6.2)	ND (5.4)	ND (6.6)	ND (5.2)	ND (230)	ND (4.8)	ND (7.1)	ND (4.1)	ND (4.7) ND (4.7)
cis-1,2-Dichloroethene	1g/kg	ND (2.7	ND (2.7	ND (2.9)	ND (2.6)	ND (2.7)	ND (3.1)	ND (2.7)	ND (3.3)	ND (2.6)	ND (110)	ND (2.4)	ND (3.5)	ND (2.4)	ND (4.) ND (2.3)
cis-1,3-Dichloropropene	ug/kg	ND (5.4	ND (5.3	ND (5.7)	ND (5.3)	ND (5.3)	ND (6.2)	ND (5.4)	ND (6.6)	ND (5.2)	ND (230)	ND (4.8)	ND (7.1)	ND (4.8)	ND (4.7)
Cyclokexane	ug/kg	ND (11)	ND (11)	ND (11)	ND (11)	ND (11)	ND (12)	ND (11)	ND (13)	ND (10)	ND (450)	ND (9.6)	ND (14)	ND (9.6)	ND (9.4)
Dibronochloromethane	ug/kg	ND (5.4	ND (5.3	ND (5.7)	ND (5.3)	ND (5.3)	ND (6.2)	ND (5.4)	ND (6.6)	ND (5.2)	ND (230)	ND (4.8)	ND (7.1)	ND (4.8)	ND (4.7)
Dichlorodifluoromethane (CFC-12)	ıg/kg	ND (5.4)	ND (5.3	ND (5.7)	ND (5.3	ND (5.3)	ND (6.2)	ND (5.4)	ND (6.6)	ND (5.2)	ND (230)	ND (4.8)	ND (7.1)	ND (4.8)	ND (4.7)
Ethylbenzene	ug/kg	ND (5.4)	ND (5.3	ND (5.7)	ND (5.3	ND (5.3)	ND (6.2)	ND (5.4)	ND (6.6)	ND (5.2)	ND (231)	ND (4.8)	ND (7.1)	ND (4.8)	ND (4.7)
Isopropylbenzene	tg/kg	ND (5.4)	ND (5.3	ND (5.7)	ND (5.3)	ND (5.3)	ND (6.2)	ND (5.4)	ND (6.6)	ND (5.2)	ND (234)	ND (4.8)	ND (7.1)	ND (4.8)	ND (4.7)
Mothyl acetate	ug/kg	ND (11)	ND (11)	ND (11)	ND (11)	ND (11	ND (12:	ND (11)	ND (13)	ND (10)	ND (450)	ND (9.6)	ND (14)	ND (9.6)	ND (9.4)
Methyl cyclohexane	tg/kg	ND (11)	ND (11)	ND (11)	ND (11)	ND (11)	ND (12	ND (11)	ND (13)	ND (10)	ND (450)	ND (9.6)	ND (14)	ND (9.6)	ND (9.4)
Methyl Tert Butyl Ether Methylene chloride	ug/kg	ND (22)	ND (21)	ND (23)	ND (21)	ND (21)	ND (25	ND (21)	ND (26)	ND (21)	ND (910)	ND (19)	ND (28)	ND (19)	ND (15)
Styren	ug/kg	1.7 J ND (5.4)	1.7 J	2.0 J	1.7 J	1.5 J	1.8 J	1.5 J	2.2 J	1.3 J	ND (230)	ND (4.8) U	ND (7.1) U	ND (4.8) U	ND (4.7, U
Tetrachloroethene	∎g/kg ∎g/kg	ND (5.4)	ND (5.3) ND (5.3)	ND (5.7)	ND (5.3)	ND (5.3)	ND (6.2)	ND (5.4)	ND (6.6)	ND (5.2)	ND (230)	ND (4.8)	ND (7.1)	ND (4.8)	ND (4.7)
Toluere	ig/kg	ND (5.4)	ND (5.3)	ND (5.7)	ND (5.3	ND (5.3	ND (6.2)	ND (5.4)	ND (6.6)	ND (5.2)	ND (230)	ND (4.8)	ND (7.1)	ND (4.8)	ND (4.7)
trans-1,2-Dichloroethene	∎g/kg ∎g/kg	ND (2.7)	ND (5.3) ND (2.7)	ND (5.7) ND (2.9)	ND (5.3) ND (2.6)	ND (5.3	ND (6.2)	ND (5.4)	ND (6.6)	ND (5.2)	ND (230)	ND (4.8)	ND (7.1)	ND (4.8)	ND (4.7)
trans-1,3-Dichloropropene	ug/kg	ND (5.4)	ND (5.3)	ND (5.7)	ND (2.6, ND (5.3)	ND (2.7 ND (5.3	ND (3.1)	ND (2.7)	ND (3.3)	ND (2.6)	ND (110)	ND (2.4)	ND (3.5)	ND (2.4)	ND (2.5)
Trichkroethene	ug/kg	ND (5.4)	ND (5.3)	ND (5.7)	ND (5.3) ND (5.3)	ND (5.3 ND (5.3	ND (6.2) ND (6.2)	ND (5.4)	ND (6.6)	ND (5.2)	ND (230)	ND (4.8)	ND (7.1)	ND (4.8)	ND (4.7)
Trichkrofluoromethane (CFC-11)	ug/kg	ND (5.4)	ND (5.3)	ND (5.7)	ND (5.3)	ND (5.3	ND (6.2)	ND (5.4) ND (5.4)	ND (6.6) ND (6.6)	ND (5.2)	ND (230)	ND (4.8)	ND (7.1)	ND (4.8)	ND (4.7)
Triflucrotrichloroethane (From 113)	ug/kg	ND (5.4)	ND (5.3)	ND (5.7)	ND (5.3)	ND (5.3	ND (6.2)	ND (5.4) ND (5.4)	ND (6.6)	ND (5.2) ND (5.2)	ND (230)	ND (4.8)	ND (7.1)	ND (4.8)	ND (4.7)
Vinyl diloride	ug/kg	ND (5.4)	ND (5.3)	ND (5.7)	ND (5.3)	ND (5.3	ND (6.2)	ND (5.4)	ND (6.6)		ND (230)	ND (4.8)	ND (7.1)	ND (4.8)	ND (4.7)
Xylene (total)	ug/kg	ND (5.4)	ND (5.3)	ND (5.7)	ND (5.3)	ND (5.3)	ND (6.2	ND (5.4)	ND (6.6)	ND (5.2) ND (5.2)	ND (230)	ND (4.8)	ND (7.1)	ND (4.8)	ND (4.7)
• • •	-00	()	()		142 (5.5)	140 (0.0	140 (0.4)	ND (3.41	MD (0.0)	ND (5.2)	ND (230)	ND (4.8)	ND (7.1)	ND (4.8)	ND (4.7)

TABLE 1

ANALYTICAL RESULTS SUMMARY RH Work Plan Addendum No. 3 GM POWERTRAIN - BEDFORD PLANT BEDFORD, IN

Sampie Location: Sampie ID:	B-X12 S-04140		B-X129Y224 S-041404-JC-070	B-X129Y:24	B-X129Y:36	B-X129Y:36	B-X129Y236	B-X129Y247	B-X129Y247	B-X132Y:86B	B-X132Y:86B	B-X132Y;86B	B-X143Y193B	B-X143Y:93B
Sample Date:	4/14/		5-041404-JC-070 4/14/2004	S-041404-JC-071 4/14/2014	S-041404-JC-065 4/14/2004	S-041404-JC-066 4/14/2014	S-041404-JC-067 4/14/2014	S-041404-JC-063 4/14/2014	S-041404-JC-064	S-040804-JC-050	S-040804-JC-051	S-040804-JC-052	S-040704-JC-047	S-040704-JC-048
Sampie Depth:	(0-		(0-2)	(6-8)	(0-2)	(6-8)	(6-8)	4/14/2014 (0-2)	4/14/20/4 (6-8)	4/8/20(4 (0-2)	4/8/2014	4/8/20(4 (38-40.))	4/7/20(4	4/7/2014
					\- - /	10 0)	Duplicate	(0-2)	(0-0)	(0-2)	(b-8)	(38-40.3)	(0-2)	(6-8)
Semi-/olatiles	Inits						,							
2,2'-osybis(1-Chloropropana) (bis(2-chloroisopropyl) ether) ug	g/kg ND(00) ND (410)	ND (390)	ND (42()	ND (410)	ND (44()	ND (410)	ND (380)	ND (420)	ND (370) UJ	ND (770)	N. (400)		
2,4,5-Trichlorophenol ug	g/kg ND(ND (390)	ND (420)	ND (410)	ND (440)	ND (410)	ND (380)	ND (420)	ND (370) ND (370)	ND (770) ND (770)	ND (454) ND (454)	ND (394)	ND (386)
	g/kg ND(ND (390)	ND (420)	ND (416)	ND (440)	ND (410)	ND (380)	ND (420)	ND (374)	ND (770)	ND (451)	ND (394) ND (394)	ND (384) ND (384)
	g/kg ND(ND (390)	ND (420)	ND (410)	ND (440)	ND (410)	ND (380))	ND (420)	ND (37t)	ND (770)	ND (454)	ND (394)	ND (384)
	g/kg ND(ND (390)	ND (420)	ND (410)	ND (440)	ND (410)	ND (380))	ND (420)	ND (370)	ND (774)	ND (450)	ND (391)	ND (384)
-	g/kg ND(2 g/kg ND(4		ND (1900)	ND (2000)	ND (2004)	ND (2100)	ND (200))	ND (1800)	ND (200)	ND (1800)	ND (380)	ND (2200)	ND (1900)	ND (190)
-,	g/kg ND(4 g/kg ND(4		ND (390) ND (390)	ND (420) ND (420)	ND (410) ND (410)	ND (440)	ND (410)	ND (380))	ND (420)	ND (370)	ND (771)	ND (450)	ND (391)	ND (380)
	kg ND(ND (390)	ND (420)	ND (410)	ND (440) ND (440)	ND (410) ND (410)	ND (380)) ND (380))	ND (420)	ND (370)	ND (770)	ND (450)	ND (390)	ND (38#)
	s/kg ND(ND (390)	ND (420)	ND (410)	ND (440)	ND (410)	ND (380))	ND (42() ND (42()	ND (370) ND (370) UJ	ND (771) ND (771)	ND (450)	ND (390)	ND (380)
2-Methylnaphthalene ug	g/kg ND (4		ND (390)	ND (420)	ND (410)	ND (440)	ND (410)	ND (380))	ND (420)	ND (370)	43 I	ND (450) ND (450)	ND (390) ND (390)	ND (380) ND (380)
	g/kg ND(ND (390)	ND (420)	ND (410)	ND (410)	ND (410)	ND (380))	ND (420)	ND (370) UJ	ND (770)	ND (450)	ND (390)	ND (380)
	5/kg ND (2		ND (1900)	ND (2001)	ND (2004)	ND (2104)	ND (200))	ND (1800)	ND (200))	ND (1800)	ND (3800)	ND (2200)	ND (1900)	ND (1900)
	/kg ND (4		ND (390)	ND (420)	ND (410)	ND (440)	ND (410)	ND (380))	ND (420)	ND (370)	ND (770)	ND (450)	ND (390)	ND (380)
•	5/kg ND (2 5/kg ND (2		ND (1900) ND (1900)	ND (2009) ND (2009)	ND (2000)	ND (2100)	ND (2000)	ND (1800)	ND (200))	ND (1800)	ND (3800)	ND (220)	ND (1900)	ND (1900)
· · · · · · · · · · · · · · · · · · ·	/kg ND(2		ND (1900)	ND (2000) ND (2000)	ND (2000) ND (2000)	ND (210) ND (210)	ND (2000) ND (2000)	ND (1800) ND (1800)	ND (2001) ND (2001)	ND (180)	ND (3800)	ND (220)	ND (1900)	ND (190)
	/kg ND(4		ND (390)	ND (420)	ND (410)	ND (440)	ND (410)	ND (3804)	ND (420)	ND (180)) ND (370)	ND (3800) ND (770)	ND (220)) ND (450)	ND (190)	ND (190)
	kg ND(4	00 ND (410	ND (390)	ND (420)	ND (410)	ND (440)	ND (410)	ND (3800)	ND (420)	ND (37()	ND (77t)	ND (450) ND (450)	ND (390) ND (390)	ND (38() ND (38()
	;/kg ND (4		ND (390)	ND (420)	ND (410)	ND (440)	ND (410)	ND (3804)	ND (420)	ND (370)	ND (770)	ND (450)	ND (39()	ND (380)
	/kg ND (4		ND (390)	ND (420)	ND (410)	ND (410)	ND (410)	ND (3800)	ND (420)	ND (370)	ND (770)	ND (450)	ND (39()	ND (38()
	/kg ND (4 :/kg ND (2		ND (390)	ND (420)	ND (410)	ND (440)	ND (410)	ND (3800)	ND (420)	ND (370) UJ	ND (77()	ND (450)	ND (390)	ND (38()
	/kg ND(2 /kg ND(2		ND (1900) ND (1900)	ND (2000) ND (2000)	ND (2000) ND (2000)	ND (2100)	ND (2000)	ND (1800)	ND (2000)	ND (180))	ND (380))	ND (220))	ND (190))	ND (190)
	/kg ND(4		ND (390)	ND (420)	ND (410)	ND (2100) ND (440)	ND (2000) ND (410)	ND (1800) ND (380)	ND (2004) ND (420)	ND (180)) ND (37()	ND (380))	ND (220))	ND (190))	ND (190)
	/kg ND(4		ND (390)	ND (420)	ND (410	ND (440)	ND (410)	ND (380)	ND (420) ND (420)	ND (37t) ND (37t)	450 J ND (770)	ND (450) ND (450)	ND (390)	ND (38()
Acetophenone	/kg ND (4	00; ND (410)	ND (390)	ND (420)	ND (410	ND (440)	ND (410)	ND (3800)	ND (420)	ND (37()	ND (77()	ND (450)	ND (390) ND (390)	ND (380) ND (380)
	/kg ND (4		ND (390)	ND (420)	ND (410	ND (440	ND (410)	ND (3800)	ND (420)	34 J	580 I	ND (450)	ND (390)	ND (380)
	/kg ND (4		ND (390)	ND (420	ND (410)	ND (440	ND (410)	ND (3800)	ND (420)	ND (370)	ND (77t)	ND (450)	ND (390)	ND (38f)
	/kg ND(4 :/kg ND(4		ND (390)	ND (420	ND (410	ND (440	ND (410)	ND (3804)	ND (420)	ND (370)	ND (770)	ND (450)	ND (390)	ND (380) UJ
	/kg ND(4 :/kg ND(4		ND (390) ND (390)	ND (420 ND (420	ND (410 ND (410	ND (440) ND (440)	ND (410)	ND (3800)	ND (420)	96 J	700 J	ND (450)	ND (390)	ND (380)
	/kg ND(4		ND (390)	ND (420)	25 J	ND (440 ND (440	ND (410) ND (410)	ND (3800) ND (3800)	ND (420) ND (420)	120 J	780	ND (450)	ND (390)	83 J
	/kg ND(4		ND (390)	ND (420	ND (410)	ND (440	ND (410)	ND (3800)	ND (420) ND (420)	150 J 97 J	830 J 490 I	R ND (450)	ND (390) ND (390)	ND (380) UJ ND (380)
	/kg ND (4		ND (390)	ND (420	ND (410	ND (440	ND (410)	ND (380t)	ND (420)	82 J	450 J	R (450)	ND (390)	ND (380)
	/kg ND(4		ND (390)	ND (420)	ND (410)	ND (440)	ND (410	ND (3800)	ND (420)	ND (370)	40 J	ND (450)	ND (390)	ND (380)
	/kg ND(4		ND (390)	ND (420)	ND (410)	ND (440)	ND (410	ND (380()	ND (420)	ND (370)	ND (770)	ND (450)	ND (390)	ND (380)
	/kg ND(4 /kg ND(4		ND (390) ND (390)	ND (420) ND (420)	ND (410)	ND (440)	ND (410	ND (380()	ND (420)	ND (370) UJ	ND (770)	ND (450)	ND (390)	ND (380)
	/kg ND(4		ND (390)	ND (420)	ND (410) ND (410)	ND (440) ND (440)	ND (410 ND (410	ND (380() ND (380()	ND (420) ND (420)	ND (370) ND (370)	75 J	ND (450)	ND (390)	ND (380)
	/kg ND(4		ND (390)	ND (420)	ND (410)	ND (440)	ND (410	ND (380()	ND (420)	ND (370) ND (370)	ND (770) ND (770)	ND (450) ND (450)	ND (390) ND (390)	ND (380)
Carbazole ug.	/kg ND(4	0) ND (410)	ND (390)	ND (420)	ND (410)	ND (440)	ND (410	ND (3800)	ND (420)	16 [1301	ND (450)	ND (390)	ND (380) ND (380)
	/kg ND (4		ND (390)	ND (420)	18 J	ND (440)	ND (410	ND (3800)	ND (420)	120 J	810 J	R	ND (390)	ND (380)
	/kg ND (4		ND (390)	ND (420)	ND (410)	ND (440)	ND (410)	ND (3800)	ND (420)	27 J	110 J	ND (450)	ND (390)	ND (380)
-0-	/kg ND (4		ND (390)	ND (420)	ND (410)	ND (440)	ND (410	ND (3800)	ND (420)	15 J	220 J	ND (450)	ND (390)	ND (380)
	/kg ND (4 /kg ND (4		ND (390) ND (390)	ND (420) ND (420)	ND (410) ND (410)	ND (440) ND (440)	ND (410) ND (410)	ND (3800) ND (3800)	ND (420) ND (420)	ND (370)	ND (770)	ND (450)	ND (390)	ND (380)
	/kg ND (4		ND (390)	ND (420)	ND (410)	ND (440) ND (440)	ND (410)	ND (3800) ND (3800)	ND (420) ND (420)	ND (370) ND (370)	ND (770) ND (770)	ND (450)	ND (390)	ND (380)
	/kg ND(4		ND (390)	ND (420)	ND (410)	ND (440)	ND (410)	ND (3800)	ND (420	ND (370)	ND (770) ND (770)	ND (450) ND (450)	ND (390) ND (390)	ND (380) ND (380)
Fluorasthene ug,	/kg ND (4	0) ND (410)	ND (390)	ND (420)	24 J	ND (440)	ND (410)	ND (3800)	ND (420	230 [2100	ND (450)	85 J	ND (380)
	/kg ND (4		ND (390)	ND (420)	ND (410)	ND (440)	ND (410)	ND (3800)	ND (420	ND (370)	230 I	ND (450)	ND (390)	ND (380)
	/kg ND (4		ND (390)	ND (420)	ND (410)	ND (440)	ND (410)	ND (3800)	ND (420	ND (370)	ND (770)	ND (450)	ND (390)	ND (380)
	/kg ND (4		ND (390)	ND (420)	ND (410)	ND (440)	ND (410)	ND (3800)	ND (420)	ND (370)	ND (770)	ND (450)	ND (390)	ND (380)
	/kg ND (20 /kg ND (4)		ND (1900) ND (390)	ND (2000) ND (420)	ND (2000)	ND (2100)	ND (2000)	ND (18004)	ND (2000)	ND (1800) UJ	ND (3800) UJ	ND (2200) UJ	ND (1900)	ND (1900)
	/kg ND(4)		ND (390)	ND (420) ND (420)	ND (410) ND (410)	ND (440) ND (440)	ND (410) ND (410)	ND (3800)	ND (420	ND (370) UJ	ND (770)	ND (450)	ND (390)	ND (380)
	/kg ND(4		ND (390)	ND (420)	ND (410) ND (410)	ND (440)	ND (410) ND (410)	ND (3800) ND (3800)	ND (420) ND (420)	78 J ND (370)	430 J	ND (450)	ND (390)	ND (380)
	/kg ND(4		ND (390)	ND (420)	ND (410)	ND (440)	ND (410)	ND (3800)	ND (420)	ND (370)	ND (770) 36 J	ND (450) ND (450)	ND (390) ND (390)	ND (380) ND (380)
Nitrobenzene uş,	/kg ND (4	0) ND (410)	ND (390)	ND (420)	ND (410)	ND (440)	ND (410)	ND (3800)	ND (420)	ND (370)	36 J ND (770	ND (450)	ND (390)	ND (380) ND (380)
N-Nitrosodi-n-propylamine uz,			ND (390)	ND (420)	ND (410)	ND (440)	ND (410)	ND (3800)	ND (420)	ND (370) UJ	ND (770)	ND (450	ND (390	ND (380)
	/kg ND (4)		ND (390)	ND (420)	ND (410)	ND (440)	ND (410)	ND (3800)	ND (420)	ND (370	ND (770	ND (450	ND (390	ND (380
	/kg ND (44		ND (390)	ND (420)	ND (410)	ND (440)	ND (410)	ND (3800)	ND (420)	ND (370	ND (770	ND (450)	ND (390	ND (380
	/kg ND (40 /kg ND (40		ND (390) ND (390)	ND (420) ND (420)	ND (410)	ND (440)	ND (410)	ND (3800)	ND (420)	130 J	1500	ND (450	ND (390	ND (380
4,5	/kg ND(40		ND (390)	ND (420) ND (420)	ND (410) 20 J	ND (440) ND (440)	ND (410) ND (410)	ND (3800) ND (3800)	ND (420) ND (420)	ND (370) UJ	ND (770	ND (450)	ND (390)	ND (380
·		. , ,		()	20,	.15 (110)	.40 (110)	14D (2004)	ND (420)	180 J	1600	ND (450)	70 J	ND (380)

Page 9 of 12

TABLE

ANALYTICAL RESUITS SUMMARY RF. Work Plan Addendum No. 3 GM PCWERTRAIN - BEDFORD PLANT BEDFORD, IN

Sampl: Location: Sampl: ID:	B-X129Y193 S-041404-JC-068	B-X129Y193 S-041404-JC-069	B-X129Y224 S-041404-JC-070	B-X129Y224 S-041404-JC-071	B-X129Y236 S-041404-JC-065	B-X129Y236 S-041404-JC-066	B-X129Y;36 S-041404-JC-067	B-X129Y:47 S-041404-JC-063	B-X129Y;47 S-041404-JC-064	B-X132YI36B S-040804-JC-050	B-X132YB6B S-040804-JC-051	B-X132YI36B S-040804-1C-052	B-X143Y193B S-040704-IC-047	B-X143Y193B S-040764-1C-048
Sampli Date:	4/14/2004	4/14/2001	4/14/2004	4/14/2001	4/14/2004	4/14/2064	4/14/20(4	4/14/20(4	4/14/20(4	4/8/2001	4/8/2001	4/8/2004	4/7/2001	4/7/2004
Sample Depth:	(0-2)	(4-6)	(0-2)	(6-8)	(0-2)	(6-8)	(6-8)	(0-2)	(6-8)	(0-2)	(6-8)	(38-40.9)	(0-2)	(6-8)
							Duplicate							
Ini	's													
Metali														
Aluminum ng/	kg 13400	14100	10000	12500	8930	16600	14500	9190	16400	7720	7810	9170	13600	6860
Antimony ng/		ND (7.5)	ND (7.2)	ND (7.7)	ND (7.4)	ND (7.9	ND (7.5	ND (6.9)	ND (7.7	ND (6.7)	ND (7.0)	ND (8.2)	0.95 J	0.28]
Arseni: mg/		7,5	4.2	5.0	5.5	11.9	8.0	2.1	9.5	4.8	5.1	6.7	6.3	3.6
Barium ng/	kg 61.1	81.9	197	8.2 J	104	41.9	53.4	19.3 J	67.7	37.7	42.6	95.6	54.1	31.9
Berylliam ng/	kg 0.50 J	0.53 J	ND (0.60) U	0.88	ND (0.62) U	0.54 J	ND (0.62) U	ND (0.58) U	ND (0.64) U	ND (0.56 U	ND (0.59 U	1.2	ND (0.59 U	ND (0.58) U
Cadmium ng/	kg ND (0.61) U	ND (0.62) U	ND (0.60) U	0.29 J	ND (0.62) U	ND (0.66) U	ND (0.62) U	0.28 J	ND (0.64) U	0.38 J	0.32 J	0.48 J	0.73	0.43 [
Chromium Total ng/	kg 23.6	28.6	18.7	28.0	21.2	37.3	17.8	39.9	19.6	18.4	19.1	19.1	64.5]	23.1 [
Cobalt ng/	kg 7.7	5.5 J	2.6 J	7.9	19.0	5.3 J	10.7	13.2	6.6	17.3	52.3	10.1	128	20.3
Copper ng/	kg 13.6	101	16.4	15.6	46.9	18.2	11.6	218	18.3	32.5	31.7	20.0	198 [101 j
Cyanice (amenable) ng/	kg ND (0.61)	ND (0.62)	ND (0.60)	ND (0.64)	ND (0.62)	ND (0.66)	ND (0.62)	ND (0.58)	ND (0.64)	ND (0.56)	ND (0.59)	ND (0.68)	ND (0.59)	ND (0.58)
Cyanide (total) ng/	kg ND (0.61)	ND (0.62)	ND (0.60)	ND (0.64)	ND (0.62)	ND (0.66)	ND (0.62)	ND (0.58)	ND (0.64)	ND (0.5c)	ND (0.59)	ND (0.68)	ND (0.59)	ND (0.58)
Iron ng/	kg 24600	25600	19200	25800	11600	41900	21300	5160	26400	12700	15600	31200	17100	9010
Lead ng/	kg 12.9	17.9	12.2	14.7	29.1	21.0	16.7	42.7	18.3	25.6	32.4	18.2	67.2	34.9
Manganese ng/		107	36.0	113	724	47.8	312	128	196	137	176	249	503 J	222 J
Mercury ng/	kg 0.094 J	0.094 J	0.038 J	0.046 J	1.2	0.11 J	0.023 J	6.6	0.054 J	0.11	0.13	0.070]	0.63	0.20
Nickel ng/	kg 11.4	16.9	11.9	19.3	55.6	14.2	9.5	137	12.6	19.7	17.5	34.3	183	38.9
Selenium ng/	cg 0.35 J	0.52 J	0.43 J	0.44 J	0.34 J	0.96	0.40 J	0.37 J	0.58 J	0.30 J	ND (0.59)	0.47 J	ND (0.59)	ND (0.58)
Silver ng/	kg ND (1.2)	ND (1.2)	ND (1.2)	ND (1.3)	ND (1.2)	ND (1.3)	ND (1.2)	0.33 J	ND (1.3)	ND (1.1	ND (1.2)	ND (1.4)	ND (1.2) U	ND (1.2) U
Thallium ng/		ND (1.2)	ND (1.2)	ND (1.3)	ND (1.2)	ND (1.3)	ND (1.2)	ND (1.2	ND (1.3)	0.48 J	ND (1.2)	ND (1.4)	ND (1.2)	0.57 J
Vanadum ng/	kg 38.2	42.3	25.2	25.3	16.5	48.8	30.1	7.4	36.3	19.6	21.1	21.1	25.2	12.8
Zinc ng/	cg 24.0	28.3	36.8	66.5	38.0	38.0	33.8	68.8	45.7	53.7	53.7	62.9	97.8	61.7
PCBs														
Aroclo:-1016 (PCB-1016) ug/		ND (41)	ND (39)	ND (42)	ND (41)	ND (44)	ND (41)	ND (1900))	ND (42)	ND (370)	ND (190)	ND (45) UJ	ND (1900)	ND (190)
Aroclo:-1221 (PCB-1221) ug/l		ND (41)	ND (39)	ND (42)	ND (41)	ND (44)	ND (41)	ND (1900)	ND (42)	ND (370)	ND (190)	ND (45) UJ	ND (1904)	ND (190)
Aroclo-1232 (PCB-1232) vg/	g ND (40)	ND (41)	ND (39)	ND (42)	ND (41)	ND (44)	ND (41)	ND (1900)	ND (42)	ND (370)	ND (190)	ND (45) UJ	ND (1900)	ND (190)
Aroclo:-1242 (PCB-1242) ug/	g ND (40)	ND (41)	ND (39)	ND (42)	ND (41)	ND (44)	ND (41)	ND (1900))	ND (42)	ND (370)	ND (190)	ND (45) UJ	ND (1900)	ND (190)
Aroclo:-1248 (PCB-1248) ug/l	g ND (40)	ND (41)	ND (39)	ND (42)	ND (41)	ND (44)	ND (41)	ND (1900))	ND (42)	4700	2800	20 J	13000	1100
Aroclo:-1254 (PCB-1254) ug/l	g ND (40)	ND (41)	ND (39)	ND (42)	49	ND (44)	ND (41)	67000	ND (42)	ND (370)	ND (190)	ND (45) UJ	ND (1900)	ND (190)
Aroclo:-1260 (PCB-1260) ug/l	g ND (40)	ND (41)	ND (39)	ND (42)	ND (41)	ND (44)	ND (41)	ND (1900))	ND (42)	ND (370)	ND (190)	ND (45) UJ	ND (1900)	93 J
General Chemistry														
Total Solids %	81.6	80.4	83,8	78.1	80.8	75.6	80.3	86.8	78.3	89.5	85.3	73.6	85.3	86.3

TABLE 1

ANALYTICAL RESULTS SUMMARY RFI Work Plan Addendum No. 3 GM POWERTRAIN - BEDFORD PLANT BEDFORD, IN

Sample Location:		B-X143Y193B	Catch Basin Test Pit #1	Catch Basin Test Pit #1	Catch Basin Test Pit #2	MW-X126Y258	MW-X126Y258	MW-X126Y258
Sample ID:		S-040704-[C-049	S-051064-KMV-578	S-051004-KMV-579	S-051004-KMV-580	S-041301-JC-061	S-041304-JC-062	S-0414I4-JC-072
Sample Date:		4/7/2014	5/10/2004	5/10/2004	5/10/2001	4/13'2004	4/13/2004	4/14/2004
Sample Depth:		(27-294)	0-2)	(4-5)	(0-2)	(0-2)	(6-8)	(36-32)
	Units							
Volatiles								
1,1,1-Trichloroethane	ug/kg	ND (5.7)	ND (5.8)	NTD (0.0)				
1,1,22-Tetrachloroethane	ug/kg ug/kg	ND (5.7)	ND (5.8)	ND (8.3) ND (8.3)	ND (5.1)	ND 5.2)	ND (5.1)	ND(8.4)
1.1.2-Trichloroethane	ug/kg	ND (5.7)	ND (5.8)		ND (5.1)	ND 5.2)	ND 5.1)	ND(8.4)
1,1-Dichloroethane	ug/kg	ND (5.7)	ND (5.8)	ND (8.3)	ND (5.1)	ND 5.2)	ND 5.1)	ND(8.4)
1,1-Dichloroethene	ug/kg ug/kg	ND (5.7)	ND (5.8)	ND (8.3)	ND (5.1)	ND (5.2)	ND 5.1)	ND(8.4)
1,2,4-Trichlorobenzene	ug/kg	ND (5.7)	ND (5.8)	ND (8.3)	ND (5.1)	ND (5.2)	ND 5.1)	ND(8.4)
1,2-Dibromo-3-chloropropene (DBCP)	ug/kg ug/kg	ND (1:)	ND (12)	ND (8.3) UJ	ND (5.1)	ND (5.2)	ND 5.1)	ND (8.4)
1,2-Dibromoethane (Ethylese Dibromide)	ug/kg	ND (5.7)	ND (5.8)	ND (17) UJ	ND (10)	ND(10)	ND(10)	ND(17)
1,2-Dichlorobenzene	ug/kg	ND (5.*)	ND (5.8)	ND (8.3) ND (8.3) UJ	ND (5.1)	ND (5.2)	ND (5.1)	ND (8.4)
1,2-Dichloroethane	ug/kg	ND (5.7)	ND (5.8)	ND (8.3)	ND (5.1)	ND (5.2)	ND (5.1)	ND 8.4)
1,2-Dichloropropane	ug/kg	ND (5.2)	ND (5.8)	ND (8.3)	ND (5.1) ND (5.1)	ND (5.2)	ND (5.1)	ND 8.4)
1,3-Dichlorobenzene	ug/kg	ND (5.7)	ND (5.8)	ND (8.3) UJ	ND (5.1)	ND (5.2) ND (5.2)	ND (5.1)	ND 8.4)
1,4-Dchlorobenzene	ug/kg	ND (5.7)	ND (5.8)	ND (8.3) UJ	ND (5.1) ND (5.1)	ND (5.2)	ND (5.1)	ND 8.4)
2-Butanone (Mcthyl Ethyl Ectone)	ug/kg	2.1 J	ND (23)	ND (33)	ND (20)	ND 21)	ND (5.1)	ND 8.4)
2-Heranonc	ug/kg	ND (23)	ND (23)	ND (33)	ND (20)	ND 21)	1.5 J ND '20)	37 J
4-Methyl-2-Pentanone (Methyl Isobutyl Ketone)	ug/kg	ND (23)	ND (23)	ND (33)	ND (20)	ND (21)	ND 20)	ND(34)
Acetone	ug/kg	11)	ND (23)	ND (33)	ND (20)	ND (21)		ND(34)
Bertzene	ug/kg	ND (5.7)	ND (5.8)	ND (8.3)	ND (5.1)	ND (5.2)	7.) J ND (5.1)	20 J
Bromodichloromethane	ug/kg	ND (5.7)	ND (5.8)	ND (8.3)	ND (5.1)	ND (5.2)		ND (8.4)
Bromoform	ug/kg	ND (5.7)	ND (5.8)	ND (8.3)	ND (5.1)	ND (5.2)	ND (5.1)	ND (8.4)
Bromomethane (Methyl Bremide)	ug/kg	ND (5.7)	ND (5.8)	ND (8.3)	ND (5.1) UJ	ND (5.2)	ND (5.1) ND (5.1)	ND (8.4)
Carbon disulfide	ug/kg	ND (5.7)	NE (5.8)	ND (8.3)	ND (5.1)	ND (5.2)		ND (8.4)
Carbon tetrachloride	ug/kg	ND (5.7)	NE (5.8)	ND (8.3)	ND (5.1)	ND (5.2)	ND (5.1) ND (5.1)	ND (8.4)
Chlombenzene	ug/kg	ND (5.7)	NE (5.8)	ND (8.3)	ND (5.1)	ND (5.2)	ND (5.1)	ND (8.4)
Chlorethane	ug/kg	ND (5.7)	NE (5.8)	ND (8.3)	ND (5.1)	ND (5.2)	ND (5.1)	ND 6.4)
Chloroform (Trichloromethane)	ug/kg	ND (5.7)	NE (5.8)	ND (8.3)	ND (5.1)	ND (5.2)	ND (5.1)	ND (8.4) ND (8.4)
Chloromethane (Methyl Chloride)	ug/kg	ND (5.7)	NE (5.8)	ND (8.3)	ND (5.1)	ND (5.2)	ND (5.1)	ND (6.4)
cis-1,;-Dichloroethene	ug/kg	1.3 J	NE (2.9)	ND (4.2)	ND (2.5)	ND (2.6)	ND (2.6)	ND (4.2)
cis-1,i-Dichloropropene	ug/kg	ND (5.7)	NE (5.8)	ND (8.3)	ND (5.1)	ND (5.2)	ND (5.1)	ND (8.4)
Cyclohexane	ug/kg	ND (11)	ND (12)	ND (17)	ND (10)	ND (10)	ND (10)	ND 17)
Dibromochloromethane	ug/kg	ND (5.7)	NC (5.8)	ND (8.3)	ND (5.1)	ND (5.2)	ND (5.1)	ND (8.4)
Dichlerodifluoromethane (CFC-12)	ug/kg	ND (5.7)	NE (5.8)	ND (8.3)	ND (5.1)	ND (5.2)	ND (5.1)	ND (8.4)
Ethyllenzene	ug/kg	ND (5.7)	NE (5.8)	ND (8.3)	ND (5.1)	ND (5.2)	ND (5.1)	ND (8.4)
lsopropylbenzenc	ug/kg	ND (5.7)	NE (5.8)	ND (8.3)	ND (5.1)	ND (5.2)	ND (5.1)	ND (8.4)
Methyl acetate	ug/kg	ND (11)	12	ND (17)	5.1 J	2.5 J	ND(t0)	2.3 [
Methyl cyclohexane	ug/kg	ND (11)	ND (12)	ND (17)	ND (10)	ND (10)	ND (10)	ND (17)
Methyl Tert Butyl Ether	ag/kg	ND (23)	ND (23)	ND (33)	ND (20)	ND (21)	ND (20)	ND (34)
Methylene chloride	ag/kg	ND (5.7) U	ND 5.8) U	ND (8.3) U	ND (5.1) U	ND (5.2)	ND (5.1)	ND (3.4)
Styreze	ug/kg	ND (5.7)	ND(5.8)	ND (8.3)	ND (5.1)	ND (3.2)	ND (5.1)	ND (3.4)
Tetrachlorocthene	ag/kg	ND (5.7)	ND(5.8)	ND (8.3)	ND (5.1)	ND (5.2)	ND (5.1)	ND (3.4)
Toluenc	1g/kg	ND (5.7)	ND(5.8)	ND (8.3)	ND (5.1)	ND (5.2)	ND (5.1)	ND (3.4)
trans-1,2-Dichloroethene	ıg/kg	ND (2.8)	ND(2.9)	ND (4.2)	ND (2.5)	ND (2.6)	ND (2.6)	ND (1.2)
trans-1,3-Dichloropropene	ıg/kg	ND (5.7)	ND(5.8)	ND (8.3)	ND (5.1)	ND (5.2)	ND (5.1)	ND (3.4)
Trichbroothene	ag/kg	ND (5.7)	ND(5.8)	ND (8.3)	ND (5.1)	ND (5.2)	ND (5.1)	ND (3.4)
Trichbrofluoromethane (CFC-11)	ıg/kg	ND (5.7)	ND(5.8)	ND (8.3)	ND (5.1)	ND (5.2)	ND (5.1)	ND (3.4)
Trifluerotrichloreethane (From 113)	ıg/kg	ND (5.7)	ND(5.8)	ND (8.3)	ND (5.1)	ND (5.2)	ND (5.1)	ND (3.4)
Vinyl :hloride	ıg/kg	ND (5.7)	ND(5.8)	ND (8.3)	ND (5.1)	ND (5.2)	ND (5.1)	ND (3.4)
Xylene (total)	ıg/kg	ND (5.7)	ND(5.8)	ND (8.3)	ND (5.1)	ND (5.2)	ND (5.1)	ND (8.4)

TABLE1

ANALYTICAL RESULTS SUMMARY RH Work Plan Adcendum No. 3 GM POWERTRAIN - BEDFORD PLANT BEDFORD, IN

Sampic Location:		B-X143Y193B	Catch Basis Test Pit #1	Catch Basin Test Pit #1	Catch Basin Test Pit #2	MW-X116Y258	MW-X126Y258	
Sample ID:		S-040704-JC-049	S-051004-KMV-578	\$-051004-KMV-579	S-051004-KMY-580	S-041304 JC-061	S-041304-IC-062	MW-X126Y258 S-041404-JC-072
Sample Date:		4/7/2001	5/10/2004	5/10/2004	5/10/2004	4/13/2004	4/13/2004	4/14/2004
Sample Depth:		(27-29.4)	(1-2)	(4-5)	(0-2)	(0-1)	(6-3)	(30-32)
							(0.0)	(50-72)
	Units							
Semi-/alatiles								
2,2'-oxybis(1-Chloropropans) (bis(2-chloroisopropyl) ether)	ug/kg	ND (410)	ND (390)	ND (480)	NID (200)	NT (00) III		
2,4,5-Trichlorophenol	ug/kg	ND (410)	ND (390)	ND (480) ND (480)	ND (390) ND (390) UJ	ND (36) UJ	ND (290)	ND (480)
2,4,6-Trichlorophenol	ug/kg	ND (410)	ND 390)	ND (480)	ND (390) UJ	ND (360) ND (360)	ND (790)	ND (480)
2,4-Dichlorophenol	ug/kg	ND (410)	ND 390)	ND (480)	ND (390) UJ	ND (36) UJ	ND (790) ND (790)	ND (480) ND (480)
2,4-Dinethylphenol	ug/kg	ND (410)	ND '390)	ND (480)	ND (390) UJ	ND (36) UJ	1200	ND (480)
2,4-Dinitrophenol	1g/kg	ND (2001)	ND (1900)	ND (2300)	ND (1900) UJ	ND (1700)	ND (3800)	ND (2300)
2,4-Dinitrotoluene	ng/kg	ND (410)	ND 390)	ND (480)	ND (390) UI	ND (250)	ND (790)	ND (480)
2,6-Dixitrotoluene	ıg/kg	ND (410)	ND 390)	ND (480)	ND (390) UJ	ND (360)	ND (790)	ND (480)
2-Chloronaphthalene	ıg/kg	ND (410)	ND 390)	ND (480)	ND (390) UJ	ND (360)	ND (790)	ND (480)
2-Chlorophenol	1g/kg	ND (410)	ND 390)	ND (480)	ND (390)	ND (36) UJ	ND (790)	ND (480)
2-Methylnaphthalene	ug/kg	ND (410)	ND 390)	ND (480)	ND (390) UJ	ND (36) UJ	56C J	ND (480)
2-Mcthylphenol	ug/kg	ND (410)	ND 390)	ND (480)	ND (390)	ND (36) UJ	1400	ND (490)
2-Nitremiline 2-Nitrephenol	ug/kg	ND (2000)	ND (1900)	ND (2300)	ND (1900) UJ	ND (1700)	ND (3100)	ND (2300)
3,3'-Dithlorobenzidine	ug/kg	ND (410)	ND (390)	ND (480)	ND (390) UJ	ND (36)) UJ	ND (790)	ND (480)
3-Nitroaniline	ug/kg	ND (2000) ND (2000)	ND (1900)	ND (2300)	ND (1900)	ND (1700)	ND (3800)	ND (2300)
4,6-Dinitro-2-methylphenol	ug/kg ug/kg	ND (2000)	ND (1900) ND (1900)	ND (2300) ND (2300)	ND (1900) UJ	ND (1700)	ND (3800)	ND (2300)
4-Bronophenyl phenyl other	ug/kg	ND (2000)	ND (1900) ND (390)	ND (2300) ND (480)	ND (1900) ND (390)	ND (1700) ND (350)	ND (3800) ND (790)	ND (2300)
4-Chloro-3-methylphenol	ug/kg	ND (410	ND (390)	ND (480)	ND (390) ND (390) UJ	ND (36)) UJ	ND (790) ND (790)	ND (480) ND (480)
4-Chloroaniline	ug/kg	ND (410	ND (90)	ND (480)	ND (390) U	ND (36)) UJ	ND (790) ND (790)	ND (480)
4-Chlorophenyl phenyl ethe:	ug/kg	ND (410	ND (390)	ND (480)	ND (390) UJ	ND (350)	ND (790)	ND (480)
4-Methylphenol	ιg/kg	ND (410	ND (390)	ND (480)	ND (390)	ND (36)) UJ	930]	ND (480)
4-Nitroniline	ιg/kg	ND (2000)	ND (1900)	ND (2300)	ND (1900) UJ	ND (1700)	ND (3800)	ND (2300)
4-Nitrophenol	ιg/kg	ND (2000)	ND (1900)	ND (2300)	ND (1900) UJ	ND (1200)	ND (3800)	ND (2300)
Acenaphthene	tg/kg	ND (410)	ND (390)	ND (480)	ND (390) U	ND (3i0)	ND (790)	ND (480)
Acenaphthylene	tg/kg	ND (410)	ND (390)	ND (480)	ND (390) LJ	ND (3i0)	ND (790)	ND (430)
Acetophenone	ιg/kg	ND (410)	ND (390)	ND (480)	ND (390)	180J	380J	ND (430)
Anthracene Atraziae	ιg/kg	ND (410)	ND (390)	ND (480)	ND (390)	ND (360)	ND (710)	ND (430)
Atrazine Benzaliehyde	ιg/kg	ND (410)	ND (390)	ND (480)	ND (390)	ND (360)	ND (790)	ND (430)
Benzo(s)enthracene	ug/kg	ND (410) ND (410)	30 J	ND (480)	ND (390)	93	R	ND (430)
Benzo(s)pyrene	ug/kg ug/kg	ND (410)	21 J 27 J	ND (480)	ND (390)	ND (3÷0)	ND (790)	ND (430)
Benzo(z)fluoranthene	ug/kg	ND (410)	31 [ND (480) ND (480) U(ND (390) ND (390)	ND (360)	ND (790)	ND (430)
Benzo(z,h,i)perylene	ug/kg	ND (410)	27.1	ND (480)		ND (3:0)	ND (790)	ND (430)
Benzo(s)fluoranthene	ug/kg	ND (410)	ND (390)	ND (480)	17 J ND (390)	ND (340) ND (340)	ND (7%) ND (7%)	ND (430)
Biphenyl	ug/kg	ND (410)	ND (390)	ND (480)	ND (390)	ND (3i0)	260J	ND (430) ND (430)
bis(2-Chloroethoxy)methane	ug/kg	ND (410)	ND (990)	ND (480)	ND (390) U	ND (364) UJ	ND (7%)	ND (430)
bis(2-Chloroethyl)ether	ug/kg	ND (410)	ND (390)	ND (480)	ND (390)	ND (360) UJ	ND (7%)	ND (480)
bis(2-Ehylhexyl)phthalate	ug/kg	ND (410)	ND (390)	ND (480)	ND (390)	ND (340)	ND (750)	ND (480)
Butyl benzylphthalate	ug/kg	ND (410)	ND (390)	ND (480)	ND (390)	ND (360)	ND (790)	ND (480)
Caprolectam	ug/kg	ND (410)	ND (390)	ND (480)	ND (390)	ND (360)	ND (790)	ND (480)
Carbazole	ug/kg	ND (410)	ND (390)	ND (480)	ND (390)	ND (3(0)	ND (790)	ND (480)
Chryscie	ug/kg	ND (410)	25 J	ND (480)	ND (390)	ND (360)	ND (790)	ND (480)
Dibenz(a,h)anthracene	ug/kg	ND (410)	ND (390)	ND (480)	ND (390)	ND (3(0)	ND (790)	ND (410)
Dibenzofuran	ug/kg	ND (410)	ND (390)	ND (480)	ND (390) U	ND (360)	ND (790)	ND (440)
Diethyl phthalate	ug/kg	ND (410)	ND (390)	ND (480)	ND (390) U	ND (3(0)	ND (790)	ND (410)
Dimethyl phthalate	ug/kg	ND (410)	ND (390)	ND (480)	ND (390) U	ND (3(0)	ND (790)	ND (410)
Di-n-butylphthalate	ug/kg	ND (410)	ND (\$90)	ND (480)	ND (390)	ND (3 (0)	ND (790)	ND (410)
Di-n-odyl phthalate Fluorarthene	ug/kg	ND (410)	ND (390)	ND (480)	ND (390)	ND (3(0)	ND (790)	ND (4\$0)
Fluorere	ug/kg	ND (410)	361	ND (480)	20 J	ND (3(0)	ND (790)	ND (410)
Hexachlorobenzene	ug/kg ug/kg	ND (410) ND (410)	ND (190) ND (190)	ND (480) ND (480)	ND (390) U	ND (3(0)	ND (790)	ND (440)
Hexachorobutadiene	ug/kg ug/kg	ND (410)	ND (190)	ND (480) ND (480)	ND (390) ND (390) U	ND (3(0)	ND (790)	ND (480)
Hexachorocyclopentadiene	ug/kg ug/kg	ND (2000)	ND (1900)	ND (480) ND (2300)	ND (390) U ND (1900) U	ND (36() UJ ND (1700)	ND (750) ND (3830)	ND (430)
Hexachorocthane	ug/kg	ND (410)	ND (190)	ND (480)	ND (390) C)	ND (360) UJ	ND (3890) ND (750)	ND (2300) ND (480)
Indeno1,2,3-cd)pyrene	uz/kg	ND (410)	23 J	ND (480)	ND (390)	ND (360)	ND (750)	ND (480) ND (480)
Isophoione	uz/kg	ND (410)	ND (390)	ND (480)	ND (390) U	ND (360) UJ	ND (750)	ND (480)
Naphthalcne	uz/kg	ND (410)	ND (390)	ND (480)	ND (390) U	ND (360) UJ	400	ND (480)
Nitrobenzene	uʒ/kg	ND (410)	ND (390)	ND (480)	ND (390) U	ND (360) UJ	ND (750)	ND (480)
N-Nitresodi-n-propylamine	uʒ/kg	ND (410)	ND (390)	ND (480)	ND (390)	ND (360) UJ	ND (750)	ND (480)
N-Nitresodiphenylamine	ug/kg	ND (410)	ND (390)	ND (480)	ND (390)	ND (360)	ND (790)	ND (410)
Pentachlorophenoi	uʒ/kg	ND (410)	ND (390)	ND (480)	ND (390)	ND (360)	ND (790)	ND (400)
Phenan:hrene Phenol	ug/kg	ND (410)	ND (390)	ND (480)	ND (390)	ND (36)	130	ND (450)
Phenol Pyrene	ug/kg	ND (410)	ND (390)	ND (480)	ND (390)	ND (360) UJ	1100	ND (450)
- ,	ug/kg	ND (410)	32J	ND (480)	16 J	ND (36)	ND (790)	ND (480)

TABLE 1

ANALYTICAL RESULTS SUMMARY RII Work Plan Addendum No. 3 GM POWERTRAIN - BEDFORD PLANT BEDFORD, IN

Sample Location: Sample ID: Sample Date: Sample Depth:		B-X143Y193B S-040704-JC-049 4/7/20(4 (27-29.1)	Catch Basn Test Pit #1 S-05100+KMV-578 5/11/2004 ()-2)	Cstch Basin Test Pit #1 S-051004-KMV-579 5/10/2004 (4-5)	Catch Basin Test Pit #2 \$-051004-KM1/-580 5/10/2004 (0-2)	MW-X126Y258 S-04130;-JC-061 4/137:004 (0-2)	MW-X126Y258 S-04130{-JC-062 4/137.004 (6-8)	MW-X;26Y258 S-041404-JC-072 4/14/2004 (30-32)
Metas	Units							
Aluminum	ng/kg	6640	13800	40900	10200	5750	1940	22900
Antinony	ng/kg	ND (7.5) UJ	NE (7.0)	ND (8.7)	ND (7.1)	ND (65) UI	ND (72) UI	ND (8.7)
Arseric	ng/kg	3.9	5.8	ND (1.5) U	3.6	1.4	0.65 J	190
Bariun	ng/kg	49.6	60.1	5.71	34.7	6.91	3.2]	148
Beryllum	ng/kg	1.2	ND (0.58) U	ND (0.73)	ND (0.59) U	ND (0.54) U	ND (0.50) U	1.7
Cadmium	ng/kg	0.27 J	ND (0.58) U	ND (0.73)	ND (0.59) U	ND (054) U	ND (050) U	1.2
Chronium Total	ng/kg	11.7 J	35.3	4.0	29.1	31.9 J	1.91	302
Cobal	ng/kg	6.0]	13.6	0.65 [8.0	6.4	ND (60) U	8.)
Copper	ng/kg	11.8]	132	528	99.1	75.0 [6.61	222
Cyanile (amenable)	ng/kg	ND (0.63)	ND(0.58)	ND (0.73)	ND (0.59)	ND (C54)	ND (C60)	ND (0.73)
Cyanite (total)	ng/kg	ND (0.63)	ND(0.58)	ND (0.73)	ND (0.59)	ND (C54)	ND (C60)	ND (0.73)
Iron	mg/kg	12700	19700	974	9070	3020	1170	38400
Lead	ng/kg	11.2	40.0	62.6	261	23.3	117	199
Manginese	ng/kg	136 [500	21.4	283	47.7	101	441
Mercury	ng/kg	0.027	2.4	0.28	5.0	8.1	ND (C12)	
Nicke.	ng/kg	29.6	95.2	6.1	103	117	1.£J	0.13 J 35.1
Scleniam	ng/kg	ND (0.60)	ND(0.58)	ND (0.73)	ND (0.59)	ND (054)	ND (060)	
Silver	ng/kg	ND (1.3)	ND(1.2)	ND (1.5)	ND (1.2)	0.52 J	ND (1.2)	0.41 J
Thallium	ng/kg	0.62 [ND(1.2)	0.89 [ND (1.2)	ND (:.1)	ND (:.2)	ND (1.5)
Vanacium	ng/kg	15.8	22.3	5.1]	13.9	4.7J	2.6]	ND (l.5) 546
Zinc	ng/kg	65.3	67.5	30.8	49.9	29.7	14.3	973
PCBs					2.7	25.	13.7	,,,
Arocke-1016 (PCB-1016)	ug/kg	ND (41)	NE (39)	ND (48)	ND (39)	ND (*2)	ND ((0)	ND (\$8)
Arockr-1221 (PCB-1221)	ug/kg	ND (41	ND(39)	ND (48)	ND (39)	ND (*2)	ND ((0)	ND (48)
Arockr-1232 (PCB-1232)	ug/kg	ND (41	ND(39)	ND (48)	ND (39)	ND (72)	ND (40)	ND (18)
Arockr-1242 (PCB-1242)	ug/kg	ND (41	ND(39)	ND (48)	ND (39)	ND (*2)	ND (40)	ND (18)
Arockr-1248 (PCB-1248)	ıg/kg	12 [ND(39)	57	ND (39)	ND (*2)	ND (40)	ND (18)
Arockr-1254 (PCB-1254)	ug/kg	ND (41)	280	ND (48)	350	590	ND (40)	ND (18)
Arockr-1260 (PCB-1260)	ug/kg	ND (41)	ND(39)	ND (48)	ND (39)	ND (*2)	ND (40)	ND (18)
General Chemistry								
Total Solids	%	79.9	8i.6	68.6	84.8	92.	83.2	68.3